汽车工程 ›› 2025, Vol. 47 ›› Issue (6): 1007-1021.doi: 10.19562/j.chinasae.qcgc.2025.06.001

• •    

电动汽车无线充电系统DDDQ型磁耦合结构研究

杨阳1,章治1,许博2,董扬3()   

  1. 1.长安大学能源与电气工程学院,西安 710018
    2.比亚迪西安汽车工程研究院,西安 710089
    3.西安航天自动化股份有限公司,西安 710065
  • 收稿日期:2024-07-23 修回日期:2025-02-18 出版日期:2025-06-25 发布日期:2025-06-20
  • 通讯作者: 董扬 E-mail:okami3664@gmail.com
  • 基金资助:
    第二十七届中国科协年会学术论文。陕西省重点研发计划一般项目(2024SF-YBXM-599);陕西省教育厅科学研究计划项目(24JE009);陕西省交通运输厅科研项目(23-37K);咸阳市重点研发计划项目(L2024-ZDYF-ZDYF-SF-0070)

Research on the DDDQ Magnetic Coupled Structure of the Wireless Charging System for Electric Vehicles

Yang Yang1,Zhi Zhang1,Bo Xu2,Yang Dong3()   

  1. 1.School of Energy and Electrical Engineering,Chang’an University,Xi’an 710018
    2.BYD Automotive Engineering Research Institute,Xi’an 710089
    3.Xi'an Aerospace Automation Co. ,Ltd. ,Xi’an 710065
  • Received:2024-07-23 Revised:2025-02-18 Online:2025-06-25 Published:2025-06-20
  • Contact: Yang Dong E-mail:okami3664@gmail.com

摘要:

磁耦合结构作为无线充电系统中的关键部件,极大程度上决定了电动汽车无线充电系统的整体性能。本文提出了一种双正交DD线圈(DDDQ线圈)型磁耦合结构,其不仅可以通过线圈间的耦合互补,提高无线充电系统的抗偏移能力,还可以兼容静态无线充电场景及动态无线充电场景。为了验证所提出的耦合结构系统性能,本文首先分别建立了静态及动态无线充电系统仿真模型进行分析。仿真结果证明,DDDQ型磁耦合结构能够提升静态无线充电系统在偏移时的耦合能力,减小了动态无线充电过程中的耦合波动;其次,选用LCC-S补偿拓扑结构对系统进行功率补偿,分别搭建并比较不同磁耦合结构的静态无线充电系统的输出特性,结果表明基于DDDQ型磁耦合结构的系统存在偏移时仍能保持良好的传输能力,继而将DDDQ型磁耦合结构应用于动态无线充电场景,通过配置相关补偿参数后实现了系统高效的谐振传输;最后,按照相关标准选取了车内外多个监测点对系统在不同场景下的电磁安全性进行了仿真评估。结果表明DDDQ型磁耦合结构符合电磁安全标准。

关键词: 电动汽车, 无线充电, 补偿拓扑, 磁耦合结构, 电磁安全

Abstract:

The magnetic coupling mechanism, as the key component in the wireless charging system for electric vehicles, greatly determines the overall performance of the system. In this paper, a double D double Quadrature (DDDQ) magnetic coupled structure is proposed, which can not only improve the anti-offset capability of wireless charging system through coupling and complementing of the coils, but also be compatible with static wireless charging scenarios and dynamic wireless charging scenarios. To verify the performance of the proposed coupling structure, in this paper firstly simulation models for both static and dynamic wireless charging systems are established for testing and analysis. The simulation results show that the DDDQ magnetic coupling structure enhances coupling capability under offset conditions in static wireless charging and reduces coupling fluctuations in dynamic wireless charging. Secondly, the LCC-S compensation topology is chosen to compensate the power of system, and the output characteristics of static wireless charging system with different magnetic coupled structures are built and compared respectively, it is shown that wireless charging system based on the DDDQ magnetic coupled structure can still maintain better transmission capability in the case of misalignment. Then, the DDDQ magnetic coupled structure is applied to dynamic wireless charging scenario, and efficient resonant transmission is realized after configuring parameters. Finally, multiple test simulation points inside and outside the vehicle are selected according to relevant standards to evaluate the electromagnetic safety of the system in different scenarios. The results show that the DDDQ magnetic coupling structure meets electromagnetic safety standards.

Key words: electric vehicles, wireless charging, compensation circuit topology, magnetic coupled structure, electromagnetic safety