汽车工程 ›› 2025, Vol. 47 ›› Issue (11): 2093-2102.doi: 10.19562/j.chinasae.qcgc.2025.11.004

• • 上一篇    

基于改进TD3算法的混动飞行汽车空地协调能量管理策略研究

栾众楷1,沈钰焜1,赵万忠1,王春燕1(),周健豪1,姜朋昌2   

  1. 1.南京航空航天大学能源与动力学院,南京 210016
    2.南京奥联新能源有限公司,南京 210019
  • 收稿日期:2025-05-30 修回日期:2025-07-24 出版日期:2025-11-25 发布日期:2025-11-28
  • 通讯作者: 王春燕 E-mail:wcy2000@126.com
  • 基金资助:
    江苏省科技重大专项(BG2024039)

Research on Energy Management Strategy for Hybrid Electric Flying Vehicles Based on an Improved TD3 Algorithm

Zhongkai Luan1,Yukun Shen1,Wanzhong Zhao1,Chunyan Wang1(),Jianhao Zhou1,Pengchang Jiang2   

  1. 1.College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016
    2.Nanjing Aolian New Energy Co. ,Ltd. ,Nanjing 210019
  • Received:2025-05-30 Revised:2025-07-24 Online:2025-11-25 Published:2025-11-28
  • Contact: Chunyan Wang E-mail:wcy2000@126.com

摘要:

针对飞行汽车在空地协调环境下存在的功率波动剧烈、电池SOC轨迹与电池温度控制困难、发动机频繁启停与燃油经济性差等问题,本文构建了基于涡轴发动机-发电机组与动力电池协同供能的串联式架构,提出了一种融合结构经验引导的改进型TD3算法能量管理策略(KI-TD3)。通过结合发动机经济工作区先验信息,构建正向工作点奖励、动态探索机制及动作空间限制方法,提升策略性能。仿真结果表明,KI-TD3策略实现了更合理的功率分配与电池调控。相比传统TD3,其SOC更精准地收敛至目标值0.25,温升更稳定,发动机工作点更集中于高效区,燃油消耗降低3.5%;相较DP策略,KI-TD3进一步降低燃油消耗5.2%,有效抑制启停频繁和功率跳变,运行点高度集中于最低比油耗区,整体燃油经济性显著提升。

关键词: 混合动力飞行汽车, 结构经验引导, 能量管理策略, 燃油经济性

Abstract:

For severe power fluctuation, challenges in SOC and temperature control, frequent engine start-stop, and poor fuel economy in hybrid flying vehicles under air-ground coordination, in this paper a series connected architecture based on a turboshaft engine-generator set and battery collaborative power supply is constructed. An improved TD3 strategy (KI-TD3) is proposed, guided by structural priors. By incorporating the prior information of the engine’s economic working zone, positive working point reward, dynamic exploration mechanism, and action space restriction method are constructed to enhance the performance of the strategy. The simulation results show that the KI-TD3 strategy achieves better power distribution and battery control. Compared to standard TD3, it ensures more accurate SOC convergence to the target value of 0.25, stabilizes the temperature rise, concentrates engine operation in efficient zones, and cuts fuel use by 3.5%. Compared to DP, it further reduces fuel use by 5.2%, suppresses start-stop and power spikes, and keeps operation near minimum BSFC, significantly improving economy.

Key words: hybrid flying vehicle, structural prior knowledge, energy management, fuel economy