汽车工程 ›› 2025, Vol. 47 ›› Issue (11): 2141-2149.doi: 10.19562/j.chinasae.qcgc.2025.11.008

• • 上一篇    

变海拔环境对燃料电池性能影响的仿真分析

李明阳1,2,3,朱秀丽1,2,史明杰1,2,贾宝娟1,2,赵小军1,2,潘凤文1,2()   

  1. 1.山东国创燃料电池技术创新中心有限公司,潍坊 261061
    2.国家燃料电池技术创新中心,潍坊 261061
    3.山东大学机械工程学院,济南 250061
  • 收稿日期:2025-03-31 修回日期:2025-05-16 出版日期:2025-11-25 发布日期:2025-11-28
  • 通讯作者: 潘凤文 E-mail:panfw@weichai.com
  • 基金资助:
    国家重点研发计划项目(2022YFB4004400)

Simulation Analysis of the Effect of Variable Altitude Environment on Fuel Cell Performance

Mingyang Li1,2,3,Xiuli Zhu1,2,Mingjie Shi1,2,Baojuan Jia1,2,Xiaojun Zhao1,2,Fengwen Pan1,2()   

  1. 1.Shandong Guochuang Fuel Cell Technology Innovation Center Co. ,Ltd. ,Weifang 261061
    2.National Center of Technology Innovation for Fuel Cell,Weifang 261061
    3.School of Mechanical and Engineering,Shandong University,Jinan 250061
  • Received:2025-03-31 Revised:2025-05-16 Online:2025-11-25 Published:2025-11-28
  • Contact: Fengwen Pan E-mail:panfw@weichai.com

摘要:

现有氢燃料电池发动机(FCE)和固定式发电装置的匹配设计以平原为主,对高海拔低气压、氧气稀薄等带来的性能影响研究较少。本文从化学反应理论、Cruise M建模仿真角度,分析了0~4 000 m海拔变化对燃料电池的影响。结果表明,当海拔增加时,空压机须补偿空气流量才能维持电池功率稳定,特别在燃料电池高功率区间空压机运行时容易触及甚至超出高压比边界,低功率区间容易造成空压机喘振故障。因此,本文提出燃料电池变海拔适应性控制方法,通过自动调整空气过量比和入堆压力,提升燃料电池发动机海拔适应性,同时提升空气子系统及空压机的运行稳定性。

关键词: 燃料电池, 高海拔, 空压机, 性能衰减, 仿真分析

Abstract:

The current matching design of hydrogen fuel cell engine (FCE) and stationary electricity generation is primarily optimized for flat terrains, and there is relatively little research on the performance impact brought by high altitude, low air pressure, and thin oxygen. In this paper the influence of altitude changes from 0 to 4 000 meters on fuel cells is analyzed from the perspectives of chemical reaction theory and Cruise M modeling and simulation. The results show that as altitude increases, the air compressor needs to compensate for the air flow rate to maintain the stable power of the fuel cell. In the high power range of the fuel cell, the air compressor is prone to entering or even exceeding the high-pressure ratio boundary during operation, while in the low power range of the fuel cell, it is easy to cause air compressor surge faults. Therefore, in this paper, an altitude-adaptive control strategy for fuel cells is proposed, dynamically regulating the air excess ratio or inlet pressure to enhance the altitude adaptability of the fuel cell engine and simultaneously improve the operational stability of the air subsystem and the air compressor.

Key words: fuel cell, high altitude, air compressor, degradation, simulated analysis