汽车工程 ›› 2025, Vol. 47 ›› Issue (11): 2126-2140.doi: 10.19562/j.chinasae.qcgc.2025.11.007

• • 上一篇    

多工况下质子交换膜燃料电池物理场分布均匀性与运行状态研究

乔鹏宇1,吴思远1,2(),包志铭1,2,焦道宽3,刘学良1,朱凯歌1,杜浩然1,罗炜睿1,杜青1,2,焦魁1,2   

  1. 1.天津大学,先进内燃动力全国重点实验室,天津 300354
    2.天津大学,国家储能技术产教融合创新平台,天津 300354
    3.中汽研新能源汽车检验中心(天津)有限公司,天津 300300
  • 收稿日期:2025-04-15 修回日期:2025-05-22 出版日期:2025-11-25 发布日期:2025-11-28
  • 通讯作者: 吴思远 E-mail:wusiyuan_2303@tju.edu.cn
  • 基金资助:
    国家重点研发计划项目(2023YFB4005800)

Study on the Uniformity of Physical Field Distribution and Operation State of Proton Exchange Membrane Fuel Cells Under Multiple Operating Conditions

Pengyu Qiao1,Siyuan Wu1,2(),Zhiming Bao1,2,Daokuan Jiao3,Xueliang Liu1,Kaige Zhu1,Haoran Du1,Weirui Luo1,Qing Du1,2,Kui Jiao1,2   

  1. 1.Tianjin University,State Key Laboratory of Engines,Tianjin 300354
    2.Tianjin University,National Industry-Education Platform for Energy Storage,Tianjin 300354
    3.CATARC New Energy Vehicle Research and Inspection Center (Tianjin) Co. ,Ltd. ,Tianjin 300300
  • Received:2025-04-15 Revised:2025-05-22 Online:2025-11-25 Published:2025-11-28
  • Contact: Siyuan Wu E-mail:wusiyuan_2303@tju.edu.cn

摘要:

质子交换膜燃料电池(PEMFC)在复杂工况下易出现物理场分布不均,长期运行将导致局部“水淹”、“热点”或“欠气”等非健康状态,严重影响系统性能与耐久性。为深入揭示多工况下内部物理场的演化特征及其对电池运行状态的影响,本文构建了全尺寸三维多物理场耦合仿真模型,系统分析了进气化学计量比、运行温度和进气湿度3种关键工况参数对PEMFC内部水含量、氧气浓度、电流密度及温度分布的影响规律。进一步,提出了运行状态指标 Hi,结合物理场的分布特性对电池运行健康性进行量化评估。结果表明:3种工况参数均显著影响各物理场的分布均匀性及整体水平;高温、高湿或极端计量比工况下更易出现局部分布均匀性失衡,从而诱发非健康状态。研究成果可为PEMFC的运行优化与寿命管理提供理论支撑和仿真依据。

关键词: 质子交换膜燃料电池, 分布均匀性, 非健康运行状态, 耐久性

Abstract:

Proton exchange membrane fuel cells (PEMFCs) face challenges of non-uniform physical field distribution under complex operating conditions, which can result in local “water flooding,” “hot spots,” and “gas starvation” during long - term operation, severely undermining system performance and durability. To deeply reveal the evolution characteristics of the internal physical field under multiple operating conditions and its compact on the battery operation status, in this study a full - scale three - dimensional multi - physics field coupling simulation model is constructed to systematically examine the influence of three key parameters of inlet air stoichiometric ratio, operating temperature, and inlet air humidity on liquid water content, oxygen concentration, current density, and temperature distribution within PEMFCs. Furthermore, an operational state index Hi is proposed to quantitatively evaluate PEMFC operating health by integrating physical field distribution characteristics. The results show that all three parameters significantly impact the distribution uniformity and overall levels of physical fields. High - temperature, high - humidity, and extreme stoichiometric ratio conditions are more likely to disrupt local distribution uniformity, triggering non - healthy states. This research provides crucial theoretical and simulation - based support for PEMFC operation optimization and life management.

Key words: proton exchange membrane fuel cell (PEMFC), distribution uniformity, unhealthy operating state, durability