| [1] |
ZHU X, ZHOU W, ZHU Z, et al. Performance analysis of proton exchange membrane fuel cells with traveling-wave flow fields based on Grey-relational theory[J]. International Journal of Hydrogen Energy, 2023, 48(2): 740-756.
|
| [2] |
GONG F, YANG X L, ZHANG X, et al. The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell[J]. Appl Energy, 2023, 329: 120276.
|
| [3] |
刘英杰, 陈奔. 质子交换膜燃料电池流场强化传质研究进展[J]. 汽车工程, 2021, 43(6): 799-807,814.
|
|
LIU Y J, CHEN B. Progress of flow field enhanced mass transfer in proton exchange membrane fuel cells[J]. Automotive Engineering, 2021, 43(6): 799-807,814.
|
| [4] |
AFSHARI E, ZIAEI-RAD M, SHARIATI Z. A study on using metal foam as coolant fluid distributor in the polymer electrolyte membrane fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(3): 1902-1912.
|
| [5] |
KUMAR A, REDDY R G. Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates[J]. Power Sources 2003, 114(1): 54-62.
|
| [6] |
HUO S, COOPER N J, SMITH T L, et al. Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor[J]. Applied Energy, 2017, 203: 101-114.
|
| [7] |
KANG D G, LEE D K, CHOI J M, et al. Study on the metal foam flow field with porosity gradient in the polymer electrolyte membrane fuel cell[J]. Renewable Energy, 2020, 156: 931-941.
|
| [8] |
CHEN X, YANG C, SUN Y, et al. Water management and structure optimization study of nickel metal foam as flow distributors in proton exchange membrane fuel cell[J]. Applied Energy, 2022, 309: 118448.
|
| [9] |
ZHANG G, JIAO K. Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model[J]. Energy Conversion and Management, 2018, 176: 409-421.
|
| [10] |
CARTON J G, OLABI A G. Representative model and flow characteristics of open pore cellular foam and potential use in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2015, 40(16): 5726-5738.
|
| [11] |
CARTON J G, OLABI A G. Three-dimensional proton exchange membrane fuel cell model: comparison of double channel and open pore cellular foam flow plates[J]. Energy, 2017, 136: 185-195.
|
| [12] |
TAO X, SUN K, CHEN Z W T, et al. Two-phase flow in porous metal foam flow fields of PEM fuel cells[J]. Chemical Engineering Science, 2023, 282: 119270.
|
| [13] |
JO A, AHN S, OH K, et al. Effects of metal foam properties on flow and water distribution in polymer electrolyte fuel cells (PEFCs)[J]. International Journal of Hydrogen Energy, 2018, 43(30): 14034-14046.
|
| [14] |
LIM K, VAZ N, LEE J, et al. Advantages and disadvantages of various cathode flow field designs for a polymer electrolyte membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120497.
|
| [15] |
ZHANG G, BAO Z, XIE B, et al. Three-dimensional multi-phase simulation of PEM fuel cell considering the full morphology of metal foam flow field[J]. International Journal of Hydrogen Energy, 2021, 46(3): 2978-2989.
|
| [16] |
LI Z X, BAI F, HE P, et al. Three-dimensional performance simulation of PEMFC of metal foam flow plate reconstructed with improved full morphology[J]. International Journal of Hydrogen Energy, 2023, 48: 27778-27789.
|
| [17] |
BAO Z, NIU Z, JIAO K. Numerical simulation for metal foam two-phase flow field of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6229-6244.
|
| [18] |
ZHANG S Y, QU Z G, XU H T, et al. A numerical study on the performance of PEMFC with wedge-shaped fins in the cathode channel[J]. International Journal of Hydrogen Energy, 2021, 46(54): 27700-27708.
|
| [19] |
CHEN X, YU Z K, YANG C, et al. Performance investigation on a novel 3D wave flow channel design for PEMFC[J]. Hydrogen Energy, 2021, 46: 11127-11139.
|
| [20] |
喻强,汪宏斌,陈卓.相对湿度对PEMFC膜电极影响的数值模拟[J].太阳能学报, 2021, 42(12): 343-348.
|
|
YU Q, WANG H B, CHEN Z. Numerical simulation of the effect of relative humidity on PEMFC membrane electrodes[J]. Journal of Solar Energy, 2021, 42(12): 343-348.
|
| [21] |
焦魁, 王博文, 杜青,等. 质子交换膜燃料电池水热管理[M]. 北京: 科学出版社, 2020.
|
|
JIAO K, WANG B W, DU Q, et al. Hydrothermal management of proton exchange membrane fuel cells[M]. Beijing: Science Press, 2020.
|
| [22] |
BERNING T, DJILALI N. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—a parametric study[J]. Journal of Power Sources, 2003, 124(2): 440-452.
|
| [23] |
CATLIM G, ADVANI S G, PRASAD A K. Optimization of polymer electrolyte membrane fuel cell flow channels using a genetic algorithm[J]. Journal of Power Sources, 2011, 196(22): 9407-9418.
|
| [24] |
ANYANWUI S, HOU Y, XI F,et al. Comparative analysis of two-phase flow in sinusoidal channel of different geometric configurations with application to PEMFC[J]. Hydrogen Energy, 2019, 44: 13807-13819.
|
| [25] |
SEZGIN B, CAGLAYAN D G, DEVRIM Y, et al. Modeling and sensitivity analysis of high temperature PEM fuel cells by using Comsol Multiphysics[J]. International Journal of Hydrogen Energy, 2016, 41(23): 10001-10009.
|
| [26] |
FOURIE J G, PLESSIS J P D. Pressure drop modelling in cellular metallic foams[J]. Chemical Engineering Science, 2002, 57(14): 2781-2789.
|
| [27] |
OZMAT B, LEYDA B, BENSON B. Thermal applications of open-cell metal foams[J]. Advanced Manufacturing Processes, 2004, 19(5): 839-862.
|
| [28] |
李姣, 郭航, 叶芳. 气体扩散层结构对 PEMFC 性能影响二维数值模拟[J]. 热科学与技术, 2023, 22(4): 341-350.
|
|
LI J, GUO H, YE F. Two-dimensional numerical simulation of the effect of gas diffusion layer structure on PEMFC performance[J]. Thermal Science and Technology, 2023, 22(4): 341-350.
|