Automotive Engineering ›› 2021, Vol. 43 ›› Issue (5): 754-761.doi: 10.19562/j.chinasae.qcgc.2021.05.015
Previous Articles Next Articles
Fangwu Ma,Qiang Wang,Hongyu Liang,Yongfeng Pu()
Received:
2020-08-28
Revised:
2020-11-23
Online:
2021-05-25
Published:
2021-05-18
Contact:
Yongfeng Pu
E-mail:puyongfeng@jlu.edu.cn
Fangwu Ma,Qiang Wang,Hongyu Liang,Yongfeng Pu. Multi⁃objective Optimization of Crash Box Filled with Gradient Negative Poisson’s Ratio Structure Under Multiple Conditions[J].Automotive Engineering, 2021, 43(5): 754-761.
"
β/(°) | 0 | 5 | 10 | 15 | 20 | 25 | 30 | |
---|---|---|---|---|---|---|---|---|
PCF/kN | v=5 m/s | 374.81 | 80.60 | 75.386 | 78.240 | 56.530 | 45.754 | 39.117 |
v=10 m/s | 454.90 | 102.32 | 92.168 | 89.979 | 93.813 | 80.259 | 62.351 | |
v=50 m/s | 1 028.00 | 515.40 | 440.570 | 414.180 | 404.820 | 397.690 | 393.28 | |
EA/J | v=5 m/s | 11 771 | 11 246 | 11 406 | 9 857 | 7 022 | 5 372 | 4 226 |
v=10 m/s | 14 579 | 13 540 | 11 406 | 9 857 | 10 023 | 7 435 | 5 838 | |
v=50 m/s | 46 791 | 40 979 | 39 783 | 39 587 | 35 916 | 31 443 | 28 416 | |
SEA/(J·kg-1) | v=5 m/s | 3 966 | 3 789 | 3 843 | 3 321 | 2 366 | 1 810 | 1 424 |
v=10 m/s | 4 912 | 4 562 | 4 285 | 4 113 | 3 377 | 2 505 | 1 967 | |
v=50 m/s | 15 765 | 13 807 | 13 404 | 13 338 | 12 101 | 10 594 | 9 574 |
"
组号 | t/mm | t1/mm | t2/mm | t3/mm | M/kg | PCF/kN | EAθ/J |
---|---|---|---|---|---|---|---|
1 | 1.000 | 1.248 | 1.179 | 1.214 | 0.889 80 | 144.03 | 8 095 |
2 | 1.759 | 1.386 | 0.938 | 0.869 | 1.447 88 | 364.06 | 20 087 |
3 | 1.690 | 1.697 | 1.731 | 1.041 | 1.488 00 | 403.10 | 19 319 |
4 | 2.000 | 1.214 | 1.145 | 1.559 | 1.680 50 | 426.71 | 26 567 |
5 | 1.621 | 0.869 | 1.524 | 0.903 | 1.351 20 | 361.81 | 18 863 |
6 | 1.241 | 1.524 | 0.903 | 0.938 | 1.062 80 | 197.28 | 11 524 |
7 | 1.448 | 1.421 | 1.421 | 0.800 | 1.239 30 | 237.47 | 15 037 |
8 | 1.138 | 1.076 | 1.110 | 1.697 | 1.020 80 | 171.65 | 10 241 |
9 | 1.966 | 1.283 | 1.455 | 1.007 | 1.640 50 | 397.95 | 25 151 |
10 | 1.483 | 1.179 | 1.800 | 1.248 | 1.308 70 | 246.30 | 16 451 |
11 | 1.586 | 1.352 | 0.972 | 1.800 | 1.385 40 | 349.39 | 17 152 |
12 | 1.379 | 0.800 | 1.386 | 1.352 | 1.180 10 | 210.65 | 14 208 |
13 | 1.172 | 1.593 | 1.352 | 1.731 | 1.104 00 | 180.67 | 11 095 |
14 | 1.517 | 1.317 | 1.248 | 1.317 | 1.303 30 | 277.37 | 16 023 |
15 | 1.724 | 1.731 | 1.283 | 1.628 | 1.525 30 | 394.44 | 19 865 |
16 | 1.655 | 0.834 | 1.007 | 1.662 | 1.395 70 | 370.18 | 19 310 |
17 | 1.069 | 1.490 | 1.697 | 1.110 | 0.994 40 | 162.59 | 9 262 |
18 | 1.552 | 1.145 | 1.490 | 1.766 | 1.376 50 | 314.18 | 17 382 |
19 | 1.276 | 1.007 | 1.076 | 0.834 | 1.058 15 | 199.35 | 11 821 |
20 | 1.103 | 0.972 | 1.593 | 0.972 | 0.968 30 | 160.82 | 9 576 |
21 | 1.034 | 1.110 | 1.628 | 1.593 | 0.971 80 | 146.98 | 8 547 |
22 | 1.862 | 1.766 | 1.214 | 1.076 | 1.587 20 | 370.33 | 22 684 |
23 | 1.414 | 1.662 | 1.766 | 1.524 | 1.311 70 | 246.49 | 15 628 |
24 | 1.207 | 1.628 | 0.869 | 1.455 | 1.079 60 | 182.49 | 11 217 |
25 | 1.931 | 1.455 | 1.662 | 1.490 | 1.678 50 | 396.12 | 24 341 |
26 | 1.793 | 1.559 | 0.834 | 1.386 | 1.516 20 | 330.52 | 21 136 |
27 | 1.897 | 0.903 | 1.559 | 1.421 | 1.602 20 | 384.03 | 24 941 |
28 | 1.310 | 1.800 | 1.317 | 1.179 | 1.180 20 | 211.24 | 13 118 |
29 | 1.828 | 0.938 | 1.041 | 1.145 | 1.494 03 | 338.35 | 23 095 |
30 | 1.345 | 1.041 | 0.800 | 1.283 | 1.126 11 | 229.84 | 12 889 |
1 | 任鑫,张相玉,谢亿民.负泊松比材料和结构的研究进展[J].力学学报,2019,51(3):656-687. |
REN X, ZHANG X Y, XIE Y M. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687. | |
2 | 杨智春,邓庆田.负泊松比材料与结构的力学性能研究及应用[J].力学进展,2011,41(3): 335-350. |
YANG Z C, DENG Q T. Mechanical property and application of materials and structures with negative Poisson’s ratio[J]. Advances in Mechanics, 2011, 41(3): 335-350. | |
3 | LI D, YIN J H, DONG L, et al. Strong re⁃entrant cellular structures with negative Poisson’s ratio[J]. Journal of Materials Science, 2018, 53(5): 3493-3499.. |
4 | WANG Y L, ZHAO W Z, ZHOU G, et al. Parametric design strategy of a novel cylindrical negative Poisson’s ratio jounce bumper for ideal uniaxial compression load⁃displacement curve[J]. Science China⁃technological Sciences, 2018, 61(10): 1611-1620. |
5 | 卢日环,刘相华,刘立忠,等.变壁厚防撞吸能盒轴向压溃过程的实验研究[J].汽车工程,2018,40(2):179-183. |
LU R H, LIU X H, LIU L Z, et al. An experimental study on the axial crushing process of thickness varying energy absorbing crash box[J]. Automotive Engineering, 2018, 40(2): 179-183. | |
6 | LEE S J, LEE H A, YI S I, et al. Design flow for the crash box in a vehicle to maximize energy absorption[J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2013, 227(2):179-200. |
7 | 万鑫铭,徐小飞,徐中明,等.汽车用铝合金吸能盒结构优化设计[J].汽车工程学报,2013,3(1):15-21. |
WAN X M, XU X F, XU Z M, et al. Structure optimization design of aluminum alloy energy⁃absorbing box for automotives[J]. Chinese Journal of Automotive Engineering, 2013, 3(1): 15-21. | |
8 | MARZBANRAD J, KESHAVARZI A. A numerical and experimental study on the crash behavior of the extruded aluminum crash box with elastic support[J]. Latin American Journal of Solids and Structures, 2014, 11(8): 1329-1348. |
9 | HUSSEIN R D, RUAN D, LU G, et al. An analytical model of square CFRP tubes subjected to axial compression[J]. Composites Science and Technology, 2018,168: 170-178. |
10 | 熊锋. 车身结构轻量化与抗撞性多目标协同优化设计方法研究[D].长春:吉林大学, 2018. |
XIONG F. Research on lightweight and crashworthiness multi⁃objective collaborative optimization design method for automobile body structure[D]. Changchun: Jilin University, 2018. | |
11 | ZAREI H R, KROGER M. Optimization of the foam⁃filled aluminum tubes for crush box application[J]. Thin⁃walled Structures, 2008, 46(2): 214-221. |
12 | 王陶. 负泊松比结构力学特性研究及其在商用车耐撞性优化设计中的应用[D].南京:南京理工大学,2018. |
WANG T. Mechanical research of an auxetic cellular structure and its application in commercial vehicle crashworthiness optimization design[D]. Nanjing: Nanjing University of Science&Technology, 2018. | |
13 | 李艳. 仿生吸能盒结构设计与多目标优化研究[D].南京:南京航空航天大学,2019. |
LI Y. Structure design and multi⁃objective optimization of a novel crash box based on biomimetic structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. | |
14 | 周冠. 新型负泊松比结构关键技术研究及其在车身设计中的应用[D].长沙:湖南大学,2015. |
ZHOU G. Study on key techniques of NPR structure and its application in vehicle body design[D]. Changsha: Hunan University, 2015. | |
15 | AZARAKHSH S, GHAMARIAN A. Collapse behavior of thin⁃walled conical tube clamped at both ends subjected to axial and oblique loads[J]. Thin⁃walled Structures, 2017,112: 1-11. |
16 | SANTOSA S P. Crashworthiness analysis of ultralight metal structures[D]. Boston: Massachusetts Institute of Technology, 1999. |
17 | LU G X, YU T X. Energy absorption of structures and materials[M]. Cambridge: Woodhead Publishing, 2003:385-400. |
18 | WANG T, LI Z, WANG L M, et al. Dynamic crushing analysis of a three⁃dimensional re⁃entrant auxetic cellular structure[J]. Materials, 2019, 12(3):460. |
19 | WANG Z, LU Z, YAO S, et al. Deformation mode evolutional mechanism of honeycomb structure when undergoing a shallow inclined load[J]. Composite Structures, 2016, 147(Jul.):211-219. |
[1] | Dengfeng Wang, Chunda Lu, Hongyu Liang. Multi-objective Optimization Design of Induction Groove for Aluminum/CFRP Hybrid Tube Under Multi-angle Compression Condition [J]. Automotive Engineering, 2023, 45(7): 1286-1298. |
[2] | Libin Duan,Huajin Zhou,Zhanpeng Du,Yu Zhang,Wei Xu,Xing Liu,Haobin Jiang. Multi Workig Condition Crashworthiness Optimization Design of Body Frame Based on SHCA-T Algorithm [J]. Automotive Engineering, 2023, 45(2): 304-312. |
[3] | Fangwu Ma,Hao Sun,Hongyu Liang,Wenting Ma,Qiang Wang,Yongfeng Pu. Study on Crashworthiness of Self-Similar Hierarchical Honeycomb Structure Under Multiple Collision Conditions [J]. Automotive Engineering, 2022, 44(6): 886-892. |
[4] | Rongchao Jiang,Tao Zhang,Haixia Sun,Dawei Liu,Huanming Chen,Dengfeng Wang. Study on Lightweighting of CFRP Bumper Beam Using Entropy⁃based TOPSIS Approach [J]. Automotive Engineering, 2021, 43(3): 421-428. |
[5] | Xiangyu Cheng,Zhonghao Bai,Binhui Jiang,Feng Zhu,Clifford C. Chou. Study on Magnetorheological-fluid Bio-inspired Thin-walled Energy-absorbing Tube and Its Crashworthiness Controllability [J]. Automotive Engineering, 2021, 43(12): 1806-1816. |
[6] | Binbing Huang,Shaopeng Li,Shucai Xu. Forming Technologies and Crashworthiness Analysis of Automotive Tailor Welded B-pillar [J]. Automotive Engineering, 2021, 43(10): 1513-1518. |
[7] | Dengfeng Wang,Shenhua Li. Lightweight Design for the Front⁃end Structure of BIW Based on the Combination of the Design of Experiment and PSI Decision Tool [J]. Automotive Engineering, 2021, 43(1): 121-128. |
[8] | He Liangguo, Zhao Jie, Gu Xianguang. Lightweight and Crashworthiness Design of Vehicle BodyFront-end Based on Multi-cell Structure [J]. Automotive Engineering, 2020, 42(6): 832-839. |
[9] | Cui An, Xu Xiaoqian, Sun Wenlong, Yang Weili, Huang Xianqing, Liu Tianci. Study on Crashworthiness Optimization of Carbon-fiberSandwich Panel Structure with Polypropylene Foam Core [J]. Automotive Engineering, 2020, 42(6): 840-846. |
[10] | Wu Changfeng, Na Jingxin, Qin Guofeng, Lu Linzhao, Yuan Zheng, Yang Jiazhou. Improvement of Coach Crashworthiness Based onTopology Optimization of Substructure [J]. Automotive Engineering, 2019, 41(8): 922-926. |
[11] | Lei Zhengbao, Huang Min, Gou Mingxing. Leader-follower Joint Topological Optimization for the Crashworthiness of Energy Absorption and Re-direction Anti-collision Structure [J]. Automotive Engineering, 2019, 41(11): 1308-1312. |
[12] | Liu Changye, Mo Yimin, Wei Yong, Liang Yongbin & Xu Donghui. A Research on Crashworthiness of a Minivan Based on Platform Rolling [J]. , 2018, 40(7): 783-. |
[13] | Lü Xiaojiang, Zhou Dayong, Sun Guangyong, Liu Weiguo & Gu Xianguang. Crashworthiness and Lightweight Design of Mule-car Body Based on Multi-objective Reliability Optimization [J]. , 2018, 40(7): 790-. |
[14] | Zhao Xi, Chen Shuai, Ying Liang, Hou Wenbin, Hu Ping. Crashworthiness Optimization of Automotive Thin-walled Structure with Functionally Graded Strength#br# [J]. , 2018, 40(5): 508-514. |
|