Automotive Engineering ›› 2022, Vol. 44 ›› Issue (6): 945-952.doi: 10.19562/j.chinasae.qcgc.2022.06.017
Special Issue: 车身设计&轻量化&安全专题2022年
Lijun Zhang(),Ze Gao,Haiyan Yu
Received:
2021-10-09
Revised:
2021-11-19
Online:
2022-06-25
Published:
2022-06-28
Contact:
Lijun Zhang
E-mail:tjedu_zhanglijun@tongji.edu.cn
Lijun Zhang,Ze Gao,Haiyan Yu. Selection of Body-in-White Material Based on Life Cycle Assessment[J].Automotive Engineering, 2022, 44(6): 945-952.
1 | HAN H, QIAO Q Y, LIU Z W, et al. Comparing the life cycle greenhouse gas emissions from vehicle production in China and the USA: implications for targeting the reduction opportunities [J]. Clean Technologies and Environmental Policy, 2017, 19(5): 1509-1522. |
2 | 李显君, 王贺武, 危银涛. 汽车产业循环经济研究进展[J].汽车工程, 2006,22(8): 699-706. |
LI X J, WANG H W, WEI Y T. The progress in research on circular economy in automotive industry[J]. Automotive Engineering, 2006,22(8): 699-706. | |
3 | 伍昌鸿,马晓茜,陈勇,等.汽车制造、使用及回收的生命周期分析[J].汽车工程, 2006,28(2):207-211,175. |
WU C H, MA X Q, CHEN Y, et al. Vehicle life cycle assessment covering its manufacturing, use and recycling[J]. Automotive Engineering, 2006,28(2):207-211,175. | |
4 | SOFIA A, MAANS N, GÖRAN F, et al. Weighting and valuation in selected environmental systems analysis tools-suggestions for further developments[J]. Journal of Cleaner Production, 2010, 19(2): 145-156. |
5 | 高玉冰,毛显强,杨舒茜,等.基于LCA的新能源轿车节能减排效果分析与评价[J].环境科学学报, 2013, 33(5):1504-1512. |
GAO Y B, MAO X Q, YANG S Q, et al. Analysis and assessment of the energy conservation and emission reductioneffects of new energy cars based on LCA[J]. Acta Scientiae Circumstantiae, 2013, 33(5):1504-1512. | |
6 | MASOUD A, SUHARA P, JIMI T, et al. The effect of lightweighting on greenhouse gas emissions and life cycle energy for automotive composite parts [J]. Springer Berlin Heidelberg, 2019, 21(3): 625-636. |
7 | 武娟妮,万红艳,陈伟强,等.中国原生铝工业的能耗与温室气体排放核算[J].清华大学学报(自然科学版), 2010, 50(3):407-410. |
WU J N, WAN H Y, CHEN W Q, et al. Quantifying energy consumption and greenhouse gas emissions of the primary aluminum industry in China[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(3):407-410. | |
8 | 杨建新,王如松,刘晶茹.中国产品生命周期影响评价方法研究[J]. 环境科学学报, 2001(2):234-237. |
YANG J X, WANG R S, LIU J R. Methodology of life cycle impact assessment for Chinese products[J]. Acta Scientiae Circumstantiae, 2001(2):234-237. | |
9 | SILVIA C, DANIEL C, MASSIMO C, et al. Lightweighting in light commercial vehicles: cradle-to-grave life cycle assessment of a safety-relevant component[J]. The International Journal of Life Cycle Assessment, 2018, 23(10): 2043–2054. |
10 | 王长波, 张力小, 庞明月. 生命周期评价方法研究综述—兼论混合生命周期评价的发展与应用[J]. 自然资源学报, 2015, 30(7):1232-1242. |
WANG C B, ZHANG L X, PANG M Y. A review on hybrid life cycle assessment: development and application[J]. Journal of Natural Resources, 2015, 30(7):1232-1242. | |
11 | 徐树杰,董长青.基于GREET汽车全生命周期能耗排放研究[J]. 汽车工艺与材料, 2014(2):10-13. |
XU S J, DONG C Q. The research of life cycle automobile energy consumption based on GREET[J]. Automobile Technology & Material, 2014(2):10-13. | |
12 | 卢浩洁,王婉君,代敏,等.中国铝生命周期能耗与碳排放的情景分析及减排对策[J].中国环境科学, 2021, 41(1):451-462. |
LU H J, WANG W J, DAI M,et al. Scenario analysis of energy consumption and carbon emissions in Chinese aluminum life cycle and emissions reduction measures[J]. China Environmental Science, 2021,41(1):451-462. | |
13 | DONG S, LI C, XIAN G J. Environmental impacts of glass- and carbon-fiber-reinforced polymer bar-reinforced seawater and sea sand concrete beams used in marine environments: an LCA case study [J]. Polymers, 2021, 13(1): 154. |
14 | MODARESI R, PAULIUK S, LØVIK A N, et al. Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries[J]. Environmental Science & Technology, 2014, 48(18): 10776. |
15 | DAWEI W, NADA Z, KUI J, et al. Life cycle analysis of internal combustion engine, electric and fuel cell vehicles for China[J]. Energy,2013,59: 402-412. |
16 | ALEKSANDAR S, FRANCESCO S, MARTIN L, et al. Comparative Life Cycle Assessment (LCA) of passenger seats and their impact on different vehicle models[J]. Int. J. of Vehicle Design,2010,53(1/2): 89-109. |
17 | HAMBALI A, SAPUAN S M, ISMAIL N, et al. Composite manufacturing process selection using analytical hierarchy process[J]. International Journal of Mechanical and Materials Engineering,2009,4(1):49-61. |
18 | 李聪波,李鹏宇,刘飞,等.面向高效低碳的机械加工工艺路线多目标优化模型[J].机械工程学报,2014,50(17):133-141. |
LI C B, LI P Y, LIU F, et al. Multi-objective machining process route optimization model for high efficiency and low carbon[J]. Journal of Mechanical Engineering, 2014, 50(17):133-141. | |
19 | ROLAND G. Life cycle energy and greenhouse gas (GHG) assessments of automotive material substitution[M]. worldautosteel.org. |
20 | ROLAND G. Parametric assessment of climate change impacts of automotive material substitution[J]. Environmental Science & Technology, 2008, 42(18):6973. |
21 | 徐建全, 杨沿平.纯电动汽车与传统汽车轻量化全生命周期多目标优化研究[J].汽车工程, 2019, 41(8):885-891,914. |
XU J Q, YANG Y P. A multi-objective lightweight optimization study on full life cycle of electric and conventional vehicles[J]. Automotive Engineering, 2019, 41(8):885-891,914. | |
22 | HYUNG J K, COLIN M, GREGORY A K, et al. Greenhouse gas emissions payback for lightweighted vehicles using aluminum and high‐strength steel [J]. Journal of Industrial Ecology, 2010, 14(6):929-946. |