Automotive Engineering ›› 2022, Vol. 44 ›› Issue (10): 1600-1608.doi: 10.19562/j.chinasae.qcgc.2022.10.015
Special Issue: 车身设计&轻量化&安全专题2022年
Previous Articles Next Articles
Shaowei Zhang1(),Dawei Zhu2,Guangzhao Zhai2
Received:
2022-07-30
Revised:
2022-09-02
Online:
2022-10-25
Published:
2022-10-21
Contact:
Shaowei Zhang
E-mail:zhangganzi@126.com
Shaowei Zhang,Dawei Zhu,Guangzhao Zhai. Prediction on Seat’s Anti-whiplash-injury Performance Based on Deep Learning[J].Automotive Engineering, 2022, 44(10): 1600-1608.
"
序号 | 级别 | 实验内容 | 载荷 | Cora 等级 |
---|---|---|---|---|
01 | 材料 | 头枕面套拉伸角度1 | 静态 | 0.88 |
02 | 头枕面套拉伸角度2 | 静态 | 0.89 | |
03 | 头枕面套拉伸角度3 | 静态 | 0.90 | |
04 | 头枕面套剪切 | 静态 | 0.90 | |
05 | 头枕EPP压缩 | 静态 | 0.98 | |
06 | 头枕EPP压缩1 | 动态1 | 0.96 | |
07 | 头枕EPP压缩2 | 动态2 | 0.97 | |
08 | 头枕泡沫压缩 | 静态 | 0.93 | |
09 | 头枕泡沫压缩1 | 动态1 | 0.91 | |
10 | 头枕泡沫压缩2 | 动态2 | 0.91 | |
11 | 头枕杆拉伸 | 静态 | 0.97 | |
12 | 头枕杆弯曲 | 动态1 | 0.97 | |
13 | 头枕杆弯曲 | 动态2 | 0.98 | |
14 | 座椅靠背泡沫压缩 | 静态 | 0.90 | |
15 | 座椅靠背泡沫压缩 | 动态 | 0.91 | |
16 | 分总成 | 头枕总成 | 静态 | 0.98 |
17 | 头枕总成 | 动态 1 | 0.98 | |
18 | 头枕总成 | 动态 2 | 1.00 | |
19 | 头枕总成 | 动态 3 | 0.99 | |
20 | 整椅刚度 | 静态 | 0.99 | |
21 | 整椅腰拖刚度 1 | 静态 | 1.00 | |
22 | 整椅腰拖刚度 2 | 静态 | 1.00 | |
23 | 整椅腰拖刚度 3 | 静态 | 1.00 |
1 | 胡远志,胡源源,蒋成约,等.鞭打试验中BioRID II 与THUMS 模型颈部损伤对比[J].汽车安全与节能学报,2017,8(3):239-245. |
HU Yuanzhi, HU Yuanyuan, JIANG Chengyue, et al. Neck injury comparison between BioRID Ⅱ and THUMS model in whiplash test[J]. Journal of Automotive Safety and Energy Conservation,2017,8(3):239-245. | |
2 | 刘敏慧, 王铮, 杨成国. 某鞭打试验驾驶员伤害值优化研究[J]. 汽车实用技术, 2020, 311(8):164-167. |
LIU Minhui, WANG Zheng, YANG Chengguo. Improvement of the driver injure in whiplash test [J]. Automobile Applied Technology, 2020, 311(8):164-167. | |
3 | 陈长亮,董玉德,陈超, 等.基于仿真的鞭打试验影响因素分析[J].汽车工程,2019,41(12):1459-1465. |
CHEN Changliang, DONG Yude, CHEN Chao, et al. Analysis on influencing factors of whiplash test based on simulation [J]. Automotive Engineering, 2019,41(12):1459-1465. | |
4 | 孔德伟, 马良, 胡祥玲,等. 某车型座椅鞭打性能研究[J]. 中国汽车, 2020, 338(5):6-11. |
KONG Dewei, MA Liang, HU Xiangling, et al. Research on seat whiplash performance of certain car [J]. China Auto, 2020, 338(5):6-11. | |
5 | 中国汽车技术技术研究中心(天津). C-NCAP中国新车评价规程2018版[S].2018. |
China Automotive Technology Research Center (Tianjin). C-NCAP China-new car assessment program 2018 edition [S]. 2018. | |
6 | 中国汽车技术技术研究中心(天津). C-NCAP中国新车评价规程2021版[S].2021. |
China Automotive Technology Research Center (Tianjin). C-NCAP China-new car assessment program 2021 edition[S]. 2021. | |
7 | JAKOBSSON L, LUNDELL B, NORIN H, et al. WHIPS-Volvo’s whiplash protection study[J]. Accident Analysis & Prevention, 2000, 32(2):307-319. |
8 | JAKOBSSON L, ISAKSSON-HELLMAN I, LINDMAN M. WHIPS (Volvo cars’ whiplash protection system)-the development and real-world performance[J]. Traffic Injury Prevention, 2008, 9(6):600-605. |
9 | GEHRE C. Objective rating of signals using test and simulation responses[C]. IEEE, 2009. |
10 | 陆超. 基于仿真分析的汽车座椅鞭打性能研究和优化[J]. 汽车实用技术, 2020(2):4. |
LU Chao. Research and optimization of whiplash performance of car seat based on simulation analysis [J]. Automobile Applied Technology, 2020(2):4. | |
11 | 任海波, 张为民, 高扬. 面套与假人的摩擦系数对座椅防挥鞭性的影响[J]. 机械设计与制造, 2018(12):4. |
REN Haibo, ZHANG Weimin, GAO Yang. Influence of friction coefficient between vehicle seat and dummy on whiplash [J]. Machinery Design & Manufacture, 2018(12):4. | |
12 | 李永攀, 赵海英, 沈军,等. 某车型座椅鞭打性能改进[J]. 汽车零部件, 2019(3):35-39. |
LI Yongpan, ZHAO Haiying, SHEN Jun, et al. The improvement of seat whipping performance [J]. Automobile Parts, 2019(3):35-39. | |
13 | 周泽斌, 李碧浩, 王大志,等. 提高座椅防挥鞭伤性能的优化方案[J]. 上海汽车, 2014(4):4. |
ZHOU Zebin, LI Bihao, WANG Dazhi, et al. Optimized project to improve the seat’s whiplash performance [J]. Shanghai Auto, 2014(4):4. | |
14 | 王晋, 赵秀强, 王志涛,等. 基于汽车座椅鞭打试验的仿真模型改进[J]. 汽车技术, 2015(9):4. |
WANG Jin, ZHAO Xiuqiang, WANG Zhitao, et al. Improvement of simulation model based on the vehicle seat whiplash test [J].Automotive Technology, 2015(9):4. | |
15 | 宁成业, 杨平, 胡祥玲,等. 基于C-NCAP的座椅鞭打性能研究及改进[J]. 中国汽车, 2019(12):5. |
NING Chengye, YANG Ping, HU Xiangling, et al. Improvement of seat whiplash injury based on C-NCAP [J]. China Auto, 2019(12):5. | |
16 | 项程,陈艾荣. 基于深度学习的多材料结构拓扑优化方法[J]. 同济大学学报(自然科学版),2022,50(7):975-982. |
XIANG Cheng, CHEN Airong. Topology optimization of multimaterial structures based on deep learning [J]. Journal of Tongji University(Natural Science), 2022,50 (7): 975-982. | |
17 | 周志华.机器学习[M].北京:清华大学出版社,2016. |
ZHOU Zhihua. Machine learning [M]. Beijing: Tsinghua University Press, 2016. | |
18 | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436. |
19 | GRE FF K, SRIVASTAVA R K, KOUTNÍK J, et al. LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, 28(10):2222-2232. |
20 | ZHANG J, LIN Y, ZHAO S, et al. Learning long term dependencies via fourier recurrent units[C]. Proceedings of the 35th International Conference on Machine Learning,2018. |
21 | WANG C, XU L Y, FAN J S. A general deep learning framework for history-dependent response prediction based on UA-Seq2Seq model[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372:113357. |
22 | SUBRAMANIAN V. Deep learning with PyTorch: a practical approach to building neural network models using PyTorch[M]. Packt Publishing, 2018. |
[1] | Yanxin Wang,Haiyan Li,Shihai Cui,Lijuan He,Lü Wenle. Research on Prediction Model and Assessment Parameters of Head Injury for Child Occupants Based on BP Neural Network [J]. Automotive Engineering, 2024, 46(2): 329-336. |
[2] | Ze Gao, Zunkang Chu, Jiasheng Shi, Fu Lin, Weixiong Rao, Haiyan Yu. Research on Fast Prediction Method of Stress Field of Automotive Parts Based on Graph Network [J]. Automotive Engineering, 2024, 46(1): 170-178. |
[3] | Minghui Hu,Guangyao Zhu,Changhe Liu,Guofeng Tang. Joint Estimation of State of Charge for Lithium-Ion Battery with Kalman Filtering and Gated Recurrent Unit Neural Networks Considering Hysteresis Characteristics [J]. Automotive Engineering, 2023, 45(9): 1688-1701. |
[4] | Xin Guan,Zhaohui Zhong,Jun Zhan,Tenglong Xi,Hao Ye,Shenzhen Gao,Jian Cheng,Shihui Liao,Jun Cai. Vehicle Handling and Stability Test Type Recognition Method Based on Convolutional Neural Network [J]. Automotive Engineering, 2023, 45(9): 1765-1771. |
[5] | Weiguo Liu,Zhiyu Xiang,Rui Liu,Guodong Li,Zixu Wang. Research on End-to-End Vehicle Motion Planning Method Based on Deep Learning [J]. Automotive Engineering, 2023, 45(8): 1343-1352. |
[6] | Ming Wang,Xiaolin Tang,Kai Yang,Guofa Li,Xiaosong Hu. A Motion Planning Method for Autonomous Vehicles Considering Prediction Risk [J]. Automotive Engineering, 2023, 45(8): 1362-1372. |
[7] | Guoqiang Chen,Zhengyi Shen,Li Sun,Mengfan Zhi,Tong Li. Intelligent Cockpit Perceptual Image Prediction Based on BP Neural Network Optimization Genetic Algorithm [J]. Automotive Engineering, 2023, 45(8): 1479-1488. |
[8] | Lei Zhang, Keren Guan, Xiaolin Ding, Pengyu Guo, Zhenpo Wang, Fengchun Sun. Tire-Road Friction Estimation Method Based on Image Recognition and Dynamics Fusion [J]. Automotive Engineering, 2023, 45(7): 1222-1234. |
[9] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[10] | Xia Zhao,Zhao Li,Rui Fu,Zhenzhen Ge,Chang Wang. Real-Time Detection of Distracted Driving Behavior Based on Deep Convolution-Tokens Dimensionality Reduction Optimized Visual Transformer Model [J]. Automotive Engineering, 2023, 45(6): 974-988. |
[11] | Yanyan Chen,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. Efficient Automatic Driving Instance Segmentation Method Based on Detection [J]. Automotive Engineering, 2023, 45(4): 541-550. |
[12] | Fengchong Lan,Jikai Chen,Jiqing Chen,Xinping Jiang,Zihan Li,Wei Pan. Research on Lithium Battery Remaining Useful Life Prediction Method Driven by Real Vehicle Data [J]. Automotive Engineering, 2023, 45(2): 175-182. |
[13] | Linhui Li,Xinliang Zhang,Yifan Fu,Jing Lian,Jiaxu Ma. Research on Visible Light and Infrared Post-Fusion Detection Based on TC-YOLOv7 Algorithm [J]. Automotive Engineering, 2023, 45(12): 2280-2290. |
[14] | Zhicheng He,Leihao Du,Enlin Zhou,Gaofeng Qin,Jin Huang. CAN Bus Load Rate Optimization Based on Improved Continuous Hopfield Neural Network [J]. Automotive Engineering, 2023, 45(12): 2338-2347. |
[15] | Xiaojun Zhang,Jingzhe Xi,Yanlei Shi,Anlu Yuan. Lightweight YOLOv7-R Algorithm for Road-Side View Target Detection [J]. Automotive Engineering, 2023, 45(10): 1833-1844. |