Automotive Engineering ›› 2023, Vol. 45 ›› Issue (1): 52-60.doi: 10.19562/j.chinasae.qcgc.2023.01.006
Special Issue: 智能网联汽车技术专题-感知&HMI&测评2023年
Previous Articles Next Articles
Jie Hu1,2,3(),Yuanjie Li1,2,3,Hao Geng1,2,3,Huangzheng Geng1,2,3,Xiong Guo4,Hongwei Yi4
Received:
2022-08-08
Online:
2023-01-25
Published:
2023-01-18
Contact:
Jie Hu
E-mail:auto_hj@163.com
Jie Hu,Yuanjie Li,Hao Geng,Huangzheng Geng,Xiong Guo,Hongwei Yi. Construction of Vehicle Fault Knowledge Graph Based on Deep Learning[J].Automotive Engineering, 2023, 45(1): 52-60.
"
Algorithm 1 | 基于语法规则的实体匹配 |
---|---|
Input: | 故障部位实体、失效形式实体在原文本中的索引列表L1;失效形式实体索引列表L2 |
Output: | 故障现象实体索引列表L3 |
1: | L3,stack//初始化列表L3和栈stack |
2: | for i ∈L1 do |
3: | if i ∈L2 then//判断是否为失效形式实体 |
4: | if stack== null then |
5: | stack?i //将失效形式实体索引i存入故障现象实体索引列表L3 |
6: | else |
7: | for j ∈ stack do |
8: | stack.pop(j)//将栈顶元素j弹出 |
9: | L3?[i,j]//将故障部位与失效形式组合,存放到L3中 |
10: | end for |
11: | end if |
12: | else |
13: | stack?i //将元素i压入栈中 |
14: | end if |
15: | end for |
16: | return L3//输出结果 |
1 | 徐增林, 盛泳潘, 贺丽荣 ,等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589-606. |
XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of the University of Electronic Science and Technology of China, 2016, 45(4): 589-606. | |
2 | MECKEL S, ZENKERT J, WEBER C, et al. Optimized automotive fault-diagnosis based on knowledge extraction from web resources[C]. 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2019: 1261-1264. |
3 | 陈曦. 基于领域知识图谱的柴油发动机故障诊断研究[D]. 哈尔滨:哈尔滨工业大学, 2021. |
CHEN X. Research on diesel engine fault diagnosis based on domain knowledge graph[D]. Harbin:Harbin Institute of Technology, 2021. | |
4 | 伍建辉. 基于第三方云平台的故障知识服务技术研究与系统实现[D]. 成都:西南交通大学, 2020. |
WU J H. Research and implementation of fault knowledge service technology based on third-party cloud platform[D].Chengdu: Southwest Jiaotong University, 2020. | |
5 | 赵祥龙. 基于第三方云平台的车辆故障知识图谱构建[D].成都:西南交通大学, 2019. |
ZHAO X L. Construction of vehicle fault knowledge graph based on third party cloud platform[D]. Chengdu: Southwest Jiaotong University, 2019. | |
6 | 刘峤,李杨,段宏,等.知识图谱构建技术综述[J].计算机研究与发展,2016,53(3):582-600. |
LIU Q, LI Y, DUAN H, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582-600. | |
7 | 冀振燕,孔德焱,刘伟,等.基于深度学习的命名实体识别研究[J].计算机集成制造系统,2022,28(6):1603-1615. |
JI Z Y, KONG D Y, LIU W, et al. Named entity recognition based on deep learning[J]. Computer Integrated Manufacturing System, 2022, 28(6): 1603-1615. | |
8 | 杨秀璋,彭国军,李子川,等.基于Bert和BiLSTM-CRF的APT攻击实体识别及对齐研究[J].通信学报,2022,43(6):58-70. |
YANG X Z, PENG G J, LI Z C, el al. Research on entity recognition and alignment of APT attack based on Bert and BiLSTM-CRF[J]. Journal on Communications, 2022, 43(6): 58-70. | |
9 | 张靖宜,贺光辉,代洲,等.融入BERT的企业年报命名实体识别方法[J].上海交通大学学报,2021,55(2):117-123. |
ZHANG J Y, HE G H, DAI Z, et al. Named entity recognition of enterprise annual report integrated with BERT[J]. Journal of Shanghai Jiaotong University, 2021, 55(2): 117-123. | |
10 | 储德平,万波,李红,等.基于ELMO-CNN-BiLSTM-CRF模型的地质实体识别[J].地球科学,2021,46(8):3039-3048. |
CHU D P, WAN B, LI H, et al. Geological entity recognition based on ELMO-CNN-BiLSTM-CRF model[J]. Earth Science, 2021, 46(8): 3039-3048. | |
11 | 钟诗胜,陈曦,赵明航,等.引入词集级注意力机制的中文命名实体识别方法[J].吉林大学学报(工学版),2022,52(5):1098-1105. |
ZHONG S S, CHEN X, ZHAO M H, et al. Incorporating word-set attention into Chinese named entity recognition method[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(5): 1098-1105. | |
12 | WU G, TANG G, WANG Z, et al. An attention-based BiLSTM-CRF model for Chinese clinic named entity recognition[J]. IEEE Access, 2019, 7: 113942-113949. |
13 | JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 2017: 562-570. |
14 | KIM Yoon. Convolutional neural networks for sentence classification[C]. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, 2014: 1746-1751. |
15 | KATIYAR A, CARDIE C. Nested named entity recognition revisited[C]. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 2018, 1: 861-871. |
16 | STRAKOVÁ J, STRAKA M, HAJIČ J. Neural architectures for nested NER through linearization[C]. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2019: 5326-5331. |
17 | SHIBUYA T, HOVY E. Nested named entity recognition via second-best sequence learning and decoding[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 605-620. |
18 | LI X, FENG J, MENG Y, et al. A unified MRC framework for named entity recognition[C]. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2020: 5849-5859. |
19 | WANG Y, YU B, ZHU H, et al. Discontinuous named entity recognition as maximal clique discovery[C]. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational Linguistics, 2021: 764-774. |
20 | DAI X, KARIMI S, HACHEY B, et al. An effective transition-based model for discontinuous NER[C]. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2020: 5860-5870. |
21 | 田玲, 张谨川, 张晋豪, 等. 知识图谱综述——表示、构建、推理与知识超图理论[J]. 计算机应用, 2021, 41(8): 2161-2186. |
TIAN L, ZHANG J C, ZHANG J H, et al. Knowledge graph survey:representation,construction,reasoning and knowledge hypergraph theory[J]. Journal of Computer Applications, 2021, 41(8): 2161-2186. | |
22 | CONNEAU A, SCHWENK H, BARRAULT L, et al. Very deep convolutional networks for text classification[C]. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Association for Computational Linguistics, 2017: 1107-1116. |
23 | STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[C]. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2017: 2670-2680. |
24 | ZHANG Y, YANG J. Chinese NER using lattice LSTM[C]. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, 2018: 1554-1564. |
25 | GUI T, MA R, ZHANG Q, et al. CNN-Based Chinese NER withlexicon rethinking[C]. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence Main track. Morgan Kaufmann, 2019: 4982-4988. |
[1] | Jie Hu, Haihua Qing, Min Wei, Huangzheng Geng, Xiao Zhang, Lin Chen. Research on Vehicle Diagnostic Trouble Code Decoupling Method Based on Multidimensional Association Rule [J]. Automotive Engineering, 2024, 46(1): 161-169. |
[2] | Ze Gao, Zunkang Chu, Jiasheng Shi, Fu Lin, Weixiong Rao, Haiyan Yu. Research on Fast Prediction Method of Stress Field of Automotive Parts Based on Graph Network [J]. Automotive Engineering, 2024, 46(1): 170-178. |
[3] | Weiguo Liu,Zhiyu Xiang,Rui Liu,Guodong Li,Zixu Wang. Research on End-to-End Vehicle Motion Planning Method Based on Deep Learning [J]. Automotive Engineering, 2023, 45(8): 1343-1352. |
[4] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[5] | Yanyan Chen,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. Efficient Automatic Driving Instance Segmentation Method Based on Detection [J]. Automotive Engineering, 2023, 45(4): 541-550. |
[6] | Fengchong Lan,Jikai Chen,Jiqing Chen,Xinping Jiang,Zihan Li,Wei Pan. Research on Lithium Battery Remaining Useful Life Prediction Method Driven by Real Vehicle Data [J]. Automotive Engineering, 2023, 45(2): 175-182. |
[7] | Linhui Li,Xinliang Zhang,Yifan Fu,Jing Lian,Jiaxu Ma. Research on Visible Light and Infrared Post-Fusion Detection Based on TC-YOLOv7 Algorithm [J]. Automotive Engineering, 2023, 45(12): 2280-2290. |
[8] | Xiaojun Zhang,Jingzhe Xi,Yanlei Shi,Anlu Yuan. Lightweight YOLOv7-R Algorithm for Road-Side View Target Detection [J]. Automotive Engineering, 2023, 45(10): 1833-1844. |
[9] | Jie Hu,Boyuan Xu,Zongquan Xiong,Minjie Chang,Di Guo,Lihao Xie. Cross-Domain Object Detection Algorithm Based on Multi-scale Mask Classification Domain Adaptive Network [J]. Automotive Engineering, 2022, 44(9): 1327-1338. |
[10] | Guihong Bi,Xu Xie,Zilong Cai,Zhao Luo,Chenpeng Chen,Xin Zhao. Capacity Estimation of Lithium-ion Battery Based on Deep Learning Under Dynamic Conditions [J]. Automotive Engineering, 2022, 44(6): 868-878. |
[11] | Dafang Wang,Jingdong Du,Jiang Cao,Mei Zhang,Gang Zhao. Research on Style Transfer Network for Autonomous Driving Data Generation [J]. Automotive Engineering, 2022, 44(5): 684-690. |
[12] | Jinghua Guo,Zhifei He,Yugong Luo,Keqiang Li. Vehicle Cut-in Trajectory Prediction Based on Deep Learning in a Human-machine Mixed Driving Environment [J]. Automotive Engineering, 2022, 44(2): 153-160. |
[13] | Yuande Jiang,Bing Zhu,Xiangmo Zhao,Jian Zhao,Bingbing Zheng. Modeling of Traffic Vehicle Interaction for Autonomous Vehicle Testing [J]. Automotive Engineering, 2022, 44(12): 1825-1833. |
[14] | Zhenhai Gao,Wenhao Wen,Minghong Tang,Jian Zhang,Guoying Chen. Estimation of Vehicle Motion State Based on Hybrid Neural Network [J]. Automotive Engineering, 2022, 44(10): 1527-1536. |
[15] | Shaowei Zhang,Dawei Zhu,Guangzhao Zhai. Prediction on Seat’s Anti-whiplash-injury Performance Based on Deep Learning [J]. Automotive Engineering, 2022, 44(10): 1600-1608. |