Automotive Engineering ›› 2023, Vol. 45 ›› Issue (1): 139-146.doi: 10.19562/j.chinasae.qcgc.2023.01.016
Special Issue: 新能源汽车技术-电驱动&能量管理2023年
Previous Articles Next Articles
Yubo Lian,Heping Ling,Junbin Wang(),Hua Pan,Zhao Xie
Received:
2022-08-02
Revised:
2022-08-23
Online:
2023-01-25
Published:
2023-01-18
Contact:
Junbin Wang
E-mail:2481418060@qq.com
Yubo Lian,Heping Ling,Junbin Wang,Hua Pan,Zhao Xie. A Real-time Thermal Runaway Detection Method of Power Battery Based on Guassian Mixed Model and Hidden Markov Model[J].Automotive Engineering, 2023, 45(1): 139-146.
"
特征类型 | 特征名称 | 描述 |
---|---|---|
电化学特征类 | 电压一致性 | 滑动时间窗口内的,电池单体极差电压的均方根 |
温度一致性 | 滑动时间窗口内的,电池单体极差温度的均方根 | |
容量一致性 | 本时间帧单体间容量的均方根,容量由伏安法计算得到 | |
可用容量一致性 | 本时间帧单体间可用容量(剩余电量)的均方根,可用容量由伏安法计算得到 | |
特征工程类 | 乘法类特征交叉 | 将不同原始特征两两相乘,得到新特征 |
加法类特征交叉 | 将不同原始特征两两相加,得到新特征 | |
减法类特征交叉 | 将不同原始特征两两相减,得到新特征 | |
特征分箱 | 设定不同值域区间,将连续值分入离散的特征分箱中 | |
特征变化率 | 某个特征随时间的1阶变化率 | |
多项式特征组合 | 多个特征通过多项式组合出新的特征 | |
统计学特征类 | 最大值 | 本时间帧单体间压差的最大值 |
最小值 | 本时间帧单体间压差的最小值 | |
均值 | 本时间帧全部单体压差的平均值 | |
方差 | 本时间帧压差的方差 | |
脉冲度 | 滑动时间窗口内的单体电压脉冲度,代表的是峰值在波形中的极端程度 | |
峭度 | 滑动时间窗口内的单体电压峭度,描述变量的分布波形的平缓程度 | |
偏度 | 滑动时间窗口内的单体电压偏度,代表分布曲线的“峰顶”在曲线的左或右侧 |
1 | 赵文智,刘合,张国生. 石油被替代的可能性与路径之思考[J]. 科学通报,2017,62 (36) : 4228-4236. |
ZHAO Wenzhi, LIU He, ZHANG Guosheng. The possibility and scenarios of petroleum′s substitution [J]. Chinese Science Bulletin,2017,62 (36) : 4228-4236. | |
2 | FENG Xuning, OUYANG Minggao, LIU Xiang, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review[J]. Energy Storage Materials, 2018, 10: 246-267. |
3 | 王浩, 杨聚平, 王莉, 等. 锂离子电池的安全性问题[J]. 新材料产业, 2012, 9: 88-94. |
WANG Hao, YANG Juping, WANG Li, et al. Safety of lithium ion batteries[J]. Advanced Material Industry, 2012, 9: 88-94. | |
4 | FERNANDES Y, BRY A,PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery [J]. Journal of Power Sources,2018,389: 106-119. |
5 | 阚强,陈满,任常兴.锂离子电池热失控气体燃爆特征实验研究[J].消防科学与技术,2021,40(7):959-962. |
KAN Qiang, CHEN Man, REN Changxing. Study on the characteristics of gas deflagration caused by the thermal runaway of Lithium-ion battery [J]. Fire Science and Technology, 2021, 40(7): 959-962. | |
6 | CUMMINGS S R,SWARTZ S L. Off-gas monitoring for lithium ion battery health and safety [R]. Wright Patterson AFB: Power Sources Committee Meeting,2017. |
7 | LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles [J]. Journal of Power Sources,2013,226: 272-288. |
8 | 王立业,王丽芳,刘伟龙. 基于容量差的电动汽车主动均衡控制策略研究 [J]. 电工电能新技术, 2017,36 ( 11) : 45-50. |
WANG Liye,WANG Lifang,LIU Weilong. Research on active balance control strategy of electric vehicle based on capacity difference [J].Advanced Technology of Electrical Engineering and Energy,2017,36 ( 11) : 45-50. | |
9 | 隋欣,陈永翀,张晓虎,等. 基于改进滑模观测器的锂离子电池荷电状态估计方法 [J]. 电工电能新技术 ,2018,37 (12) :69-78. |
SUI Xin, CHEN Yongchong, ZHANG Xiaohu,et al. Improved sliding mode observer for state of charge estimation of lithium-ion battery [J]. Advanced Technology of Electrical Engineering and Energy, 2018,37 (12) :69-78. | |
10 | 雷治国,张承宁,雷学国,等. 电动汽车用锂离子电池热特性和热模型研究 [J]. 电工电能新技术 ,2015,34 (12): 59-64. |
LEI Zhiguo, ZHANG Chengning, LEI Xueguo,et al. Research on thermal characteristics and thermal model of EVs lithium-ion battery [J].Advanced Technology of Electrical Engineering and Energy,2015,34 (12): 59-64. | |
11 | ZHENG Y J, OUYANG M G, LU L G, et al. Understanding aging mechanisms in lithium-ion battery packs: from cell capacity loss to pack capacity evolution [J]. Journal of Power Sources,2015,278: 287-295. |
12 | 荣雅君,杨伟,牛欢,等. 基于 BP-EKF 算法的电动汽车电池管理系统 SOC 精准估计[J]. 电工电能新技术 ,2015,34 (9): 22-28. |
RONG Yajun, YANG Wei, NIU Huan,et al. Accurate estimation of SOC value of electric vehicle battery based on EKF algorithm optimized by BP neural network [J]. Advanced Technology of Electrical Engineering and Energy,2015,34 (9): 22-28. | |
13 | 杨海学,张继业,张晗. 基于改进 Sage-Husa 的自适应无迹卡尔曼滤波的锂离子电池 SOC 估计 [J]. 电工电能新技术 ,2016,35(1) : 30-35. |
YANG Haixue, ZHANG Jiye, ZHANG Han. States of charge estimation of lithium-ion battery based on improved Sage-Husa adaptive unscented Kalman filters [J]. Advanced Technology of Electrical Engineering and Energy, 2016,35(1): 30-35. | |
14 | OUYANG M G, LIU G M, LU L G, et al. Enhancing the estimation accuracy in low state-of-charge area: a novel onboard battery model through surface state of charge determination [J]. Journal of Power Sources,2014, 270:221-237. |
15 | REN Dongsheng, LIU Xiang, FENG Xuning, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228: 633-644. |
16 | FENG Xuning, PAN Yue, HE Xiangming, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18: 26-39. |
17 | CAPPE O, MOULINES E, RYDEN T. Inference in hidden Markov models[J]. Technometrics, 2006, 48(4):574-575. |
18 | DIGGLE P J, TAWN J A, MOYEED R A. Model-based geostatistics [J]. Journal of the Royal Statistical Society A, 1998, 47: 299-350. |
19 | 中国汽车工程学会.节能与新能源汽车技术路线图2.0[M]. 北京: 机械工业出版社,2021. |
China Society of Automotive Engineers. Technology roadmap for energy saving and new energy vehicles 2.0 [M]. Beijing: China Machine Press, 2021. |
[1] | Jiqing Chen,Zihan Li,Fengchong Lan,Xinping Jiang,Wei Pan,Jikai Chen. Real-Vehicle Battery Health State Estimation Based on Nonlinear Reduced-Dimensional IC Features [J]. Automotive Engineering, 2023, 45(2): 199-208. |
[2] | Gege Cui,Lü Chao,Jinghang Li,Zheyu Zhang,Guangming Xiong,Jianwei Gong. Data-Driven Personalized Scenario Risk Map Construction for Intelligent Vehicles [J]. Automotive Engineering, 2023, 45(2): 231-242. |
[3] | Junzhao Jiang,Wenhao Yang,Bin Peng,Ting Guo,Yekai Xu,Guozhuo Wang. Driving Range Prediction of Fuel Cell Vehicles Based on Energy Consumption Weighting Strategy [J]. Automotive Engineering, 2023, 45(12): 2357-2365. |
[4] | Zhicheng He,Zejun Xie,Kan Liu,Enlin Zhou,Qian Tang,Yuanyi Huang. Collaborative Design Optimization of Pure Electric Vehicle Drivetrain and Motor Structure Parameters [J]. Automotive Engineering, 2023, 45(11): 2113-2122. |
[5] | Peilong Shi,Xuan Zhao,Zitong Chen,Qiang Yu. Study on Active Control of Exhaust Brake System for Heavy-duty Truck Based on Road Driving Condition Recognition [J]. Automotive Engineering, 2023, 45(1): 104-111. |
[6] | Jiqing Chen,Haolan Xian,Fengchong Lan. Analysis on Typical Modes of Thermal Runaway in Power Battery Pack with Uniformly Distributed Modules [J]. Automotive Engineering, 2022, 44(8): 1199-1211. |
[7] | Jian Zhao,Yaxin Li,Jing Tong,Bing Zhu,Weixiang Wu,Bohua Sun,Jiayi Han. Cross-Country Road Classification Method Based on Vehicle Dynamic Response Characteristics [J]. Automotive Engineering, 2022, 44(6): 909-918. |
[8] | Jing Huang,Yang Peng,Ye Huang,Xiaoyan Peng. Evaluation of Driver's Mental Load State Considering the Influence of Noisy Labels [J]. Automotive Engineering, 2022, 44(5): 771-777. |
[9] | Zhe Zhou,Zhaozheng Hu,Zhiqiang Wang,Hanbiao Xiao. Visual Map Matching Method for Intelligent Vehicles Based on Second-order HMM [J]. Automotive Engineering, 2022, 44(2): 190-198. |
[10] | Bing Zhu,Yuhang Sun,Jian Zhao,Peixing Zhang,Tianxin Fan,Dongjian Song. Automatic Extraction Method for Autonomous Vehicle Test Scene Primitives [J]. Automotive Engineering, 2022, 44(11): 1647-1655. |
[11] | Jie Hu,Xueling Zhu,Chen He,Guangyu Yang. Prediction on Battery State of Health of Electric Vehicles Based on Real Vehicle Data [J]. Automotive Engineering, 2021, 43(9): 1291-1299. |
[12] | Yizhan Xie,Ximing Cheng. Review of State Estimation of Lithium-ion Battery with Machine Learning [J]. Automotive Engineering, 2021, 43(11): 1720-1729. |
[13] | Jie Hu,Zhiwen Gao. A Data-driven SOC Prediction Scheme for Traction Battery in Electric Vehicles [J]. Automotive Engineering, 2021, 43(1): 1-9. |
[14] | Yan Shixuan, Zhu Ping, Liu Zhao. Research on Vehicle Fault Prediction Scheme Based on Improved LightGBM Model [J]. Automotive Engineering, 2020, 42(6): 815-819. |
[15] | Liu Zhiqiang, Wu Xuegang, Ni Jie & Zhang Teng. Driving Intention Recognition Based on HMM and SVM Cascade Algorithm [J]. , 2018, 40(7): 858-. |