Automotive Engineering ›› 2021, Vol. 43 ›› Issue (1): 1-9.doi: 10.19562/j.chinasae.qcgc.2021.01.001
Received:
2020-03-29
Revised:
2020-06-28
Online:
2021-01-25
Published:
2021-02-03
Contact:
Jie Hu
E-mail:auto_hj@163.com
Jie Hu,Zhiwen Gao. A Data-driven SOC Prediction Scheme for Traction Battery in Electric Vehicles[J].Automotive Engineering, 2021, 43(1): 1-9.
"
类型 | 特征字符 | 数据类型 | 说明 |
---|---|---|---|
车辆状态 信息 | begin_soc | int | 起始SOC值 |
average_mileage | float | 片段平均累计里程 | |
slice_time | int | 片段运行时间 | |
slice_mileage | int | 片段运行里程 | |
环境信息 | slice_temp | float | 平均温度 |
行驶工况 信息 | jiasu_average_a | float | 加速段平均加速度 |
jiansu_average_a | float | 减速段平均减速度 | |
max_a | float | 最大加速度 | |
max_v | float | 最大速度 | |
std_v | float | 速度标准差 | |
slice_average_speed | float | 平均速度 | |
jingzhi_ratio | float | 静止段比例 | |
jiasu_ratio | float | 加速段比例 | |
jiansu_ratio | float | 减速段比例 | |
yunsu_ratio | float | 匀速段比例 | |
low_v_ratio | float | 低速比例 | |
mid_low_v_ratio | float | 中低速比例 | |
mid_v_ratio | float | 中速比例 | |
mid_high_v_ratio | float | 中高速比例 | |
high_v_ratio | float | 高速比例 |
1 | BOYNUEGRI A R , UZUNOGLU M , ERDINC O , et al. A new perspective in grid connection of electric vehicles: Different operating modes for elimination of energy quality problems[J]. Applied Energy, 2014, 132(1):435-451. |
2 | HELMS H, PEHNT M, LAMBRECHT U, et al. Electric vehicle and plug-in hybrid energy efficiency and life cycle emissions[C]. 18th International Symposium Transport and Air Pollution, 2010: 113-124. |
3 | NG K S , HUANG Y F , MOO C S , et al. An enhanced Coulomb counting method for estimating state-of-charge and state-of-health of lead-acid batteries[C]. Telecommunications Energy Conference, 2009. INTELEC 2009. 31st International. IEEE Xplore, 2009. |
4 | LEE J , NAM O , CHO B H. Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering[J]. Journal of Power Sources, 2007, 174(1):9-15. |
5 | 李革臣, 古艳磊. 电化学阻抗谱法预测锂电池荷电状态[J]. 电源技术, 2008, 32(9):599-602. |
LI G C , GU Y L. SOC of lithium-ion rechargeable battery predicted by electrochemical impedance spectroscopy[J]. Chinese Journal of Power Sources, 2008, 32(9):599-602. | |
6 | FANG H , WANG Y , SAHINOGLU Z , et al. Adaptive estimation of state of charge for lithium-ion batteries[C]. American Control Conference (ACC), 2013. IEEE, 2013. |
7 | ZHANG Y , CHENG X M , FANG Y Q , et al. On SOC estimation of lithium-ion battery packs based EKF[C].Control Theory Professional Committee of China Automation Society and China System Engineering Society. Proceedings of the 32nd China Control Conference,2013:6. |
8 | FAN B , LUAN X Y , ZHANG R , et al. Research on SOC estimation algorithm for lithium battery based on EKF algorithm and ampere-hour integration method[C]. Science and Engineering Research Center. Proceedings of 2017 2nd International Conference on Electrical, Control and Automation Engineering,2017:5. |
9 | HE W , WILLIARD N , CHEN C , et al. State of charge estimation for Li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation[J]. International Journal of Electrical Power & Energy Systems, 2014, 62:783-791. |
10 | KANG L W , ZHAO X , MA J. A new neural network model for the state-of-charge estimation in the battery degradation process[J]. Applied Energy, 2014, 121:20-27. |
11 | LIU X , WU J , ZHANG C , et al. A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures[J]. Journal of Power Sources, 2014, 270:151-157. |
12 | ALVAREZ ANTON J C , GARCIA NIETO P J , BLANCO VIEJO C , et al. Support vector machines used to estimate the battery state of charge[J]. IEEE Transactions on Power Electronics, 2013, 28(12):5919-5926. |
13 | HU J N , HU J J , LIN H B , et al. State-of-charge estimation for battery management system using optimized support vector machine for regression[J]. Journal of Power Sources, 2014, 269:682-693. |
14 | 鲍伟, 葛建军. 基于稀疏采样数据的电动公交车电池SOC预测方法研究[J]. 汽车工程, 2020, 42(3): 367-374. |
BAO W,GE J J. Study on battery SOC prediction method for electric bus based on sparsely sampled data[J]. Automotive Engineering, 2020, 42(3): 367-374. | |
15 | 宋媛媛. 基于行驶工况的纯电动汽车能耗建模及续驶里程估算研究[D]. 北京:北京交通大学, 2014. |
SONG Y Y. Energy consumption modeling and cruising range estimation based on driving cycle for electric vehicles[D]. Beijing: Beijing Jiaotong University, 2014. | |
16 | DONG G , WEI J , CHEN Z. Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries[J]. Journal of Power Sources, 2016, 328:615-626. |
17 | QI X , WU G , BORIBOONSOMSIN K , et al. Data-driven decomposition analysis and estimation of link-level electric vehicle energy consumption under real-world traffic conditions[J]. Transportation Research Part D,2018,64. |
18 | 解难, 胡月昆, 杨帆,等. 环境温度对电动汽车续驶里程影响的试验研究[J]. 重庆理工大学学报, 2018, 32(6): 21-25. |
XIE N,HU Y K, YANG F, et al. Reserch on the influence of ambient temperature on the driving mileage of electric vehicles[J]. Journal of Chongqing University of Technology(Social Science),2018, 32(6): 21-25. | |
19 | 黄万友. 纯电动汽车动力总成系统匹配技术研究[D]. 济南: 山东大学, 2012. |
HUANG W Y. Research on matching technique for EV powertrain[D]. Jinan: Shandong University, 2012. | |
20 | WU J , ZHANG C H , CUI N X. Fuzzy energy management strategy for a hybrid electric vehicle based on driving cycle recognition[J]. International Journal of Automotive Technology, 2012, 13(7):1159-1167. |
21 | 王震坡, 孙逢春. 电动汽车能耗分配及影响因素分析[J]. 北京理工大学学报, 2004, 24(4):306-310. |
WANG Z P, SUN F C. Analysis of energy consumption distribution and factors of influence in electric vehicles[J]. Journal of Beijing Institute of Technology, 2004, 24(4):306-310. | |
22 | 高文敬. 动力电池SOC估算方法研究与BMS开发 [D] . 淄博:山东理工大学, 2018. |
GAO W J. Research on SOC estimation method of power battery and BMS development [D]. Zibo: Shandong University of Technology , 2018. | |
23 | 刘光明, 欧阳明高, 卢兰光,等. 基于电池能量状态估计和车辆能耗预测的电动汽车续驶里程估计方法研究[J]. 汽车工程, 2014,36(11):1302-1309. |
LIU G M, OUYANG M G, LU L G,et al. Driving range estimation for electric vehicles based on battery energy state estimation and vehicle energy consumption prediction[J]. Automotive Engineering, 2014,36(11):1302-1309. | |
24 | PAVLYSHENKO B. Using stacking approaches for machine learning models[C]. Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), F 21-25 Aug. 2018. |
25 | CHAWLA N V , BOWYER K W , HALL L O , et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1):321-357. |
26 | RODRIGUEZ J D , PEREZ A , LOZANO J A. Sensitivity analysis of k-fold cross validation in prediction error estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3):569-575. |
[1] | Nianzhong Zhang,Qiang Song,Guanfeng Wang,Mingsheng Wang. Research on Non-Current-Sensor Control of Permanent Magnet Synchronous Motor for Vehicle [J]. Automotive Engineering, 2024, 46(2): 281-289. |
[2] | Zhipeng Jiao, Jian Ma, Xuan Zhao, Kai Zhang, Dean Meng, Qi Han, Zhao Zhang. Research on Short-Time Test Cycle and Method Based on Electric Vehicle Braking Safety Detection [J]. Automotive Engineering, 2024, 46(1): 109-119. |
[3] | Jiangxin Yuan, Liping He, Yaodong Li, Gang Li. Thermal Analysis and Optimization Design of a BMS Slave Unit for Electric Vehicles [J]. Automotive Engineering, 2024, 46(1): 128-138. |
[4] | Pengbo Zhang, Renxiang Chen, Yiming Shao, Shizheng Sun, Kaibo Yan. Research Review of Fault Diagnosis for Electric Drive Powertrain System of Pure Electric Vehicles [J]. Automotive Engineering, 2024, 46(1): 61-74. |
[5] | Da Li,Junjun Deng,Zhaosheng Zhang,Peng Liu,Zhenpo Wang. Review on Power Battery Safety Warning Strategy in Electric Vehicles [J]. Automotive Engineering, 2023, 45(8): 1392-1407. |
[6] | Yilin He,Jian Ma,Shukai Yang,Wei Zheng,Qifan Xue. Research on Stability Model Predictive Control of Intelligent Electric Vehicle with Preview Characteristics [J]. Automotive Engineering, 2023, 45(5): 719-734. |
[7] | Haiqiang Liang,Hongwen He,Kangwei Dai,Bo Pang,Peng Wang. Research on Lithium Ion Battery Life Prediction Method Based on Empirical Aging Model and Mechanism Model for Electric Vehicles [J]. Automotive Engineering, 2023, 45(5): 825-835. |
[8] | Yapeng Li,Xiaolin Tang,Xiaosong Hu. Study on Eco-driving of PHEVS Based on Hierarchical Control Strategy [J]. Automotive Engineering, 2023, 45(4): 551-560. |
[9] | Zhongqiang Wu,Changxing Zhang. Distributed Charging Control of Electric Vehicles Considering Distribution Grid Load [J]. Automotive Engineering, 2023, 45(4): 598-608. |
[10] | Zhiheng Wu,Aimin Liu. Switching Functional Hybrid Control Strategy for Permanent Magnet Synchronous Motor of Electric Vehicle [J]. Automotive Engineering, 2023, 45(4): 619-627. |
[11] | Junnian Wang,Shoulin Gao,Fang Yang,Changyang Guan,Zhihua Yang. Optimization of Vibration Characteristic of an Electric Torque-Vectoring Drive-Axle with Multiple Planetary Gearsets [J]. Automotive Engineering, 2023, 45(3): 421-429. |
[12] | Jiqing Chen,Zihan Li,Fengchong Lan,Xinping Jiang,Wei Pan,Jikai Chen. Real-Vehicle Battery Health State Estimation Based on Nonlinear Reduced-Dimensional IC Features [J]. Automotive Engineering, 2023, 45(2): 199-208. |
[13] | Gege Cui,Lü Chao,Jinghang Li,Zheyu Zhang,Guangming Xiong,Jianwei Gong. Data-Driven Personalized Scenario Risk Map Construction for Intelligent Vehicles [J]. Automotive Engineering, 2023, 45(2): 231-242. |
[14] | Cheng Zhu,Di Liu,Xinyu Teng,Guohua Zhang,Dan Yu,Sha Liu,Ningdan Hu. Comparative Analysis and Forecast Research on Comprehensive Economy of New Energy Vehicles [J]. Automotive Engineering, 2023, 45(2): 333-340. |
[15] | Qin Li,Jianming Tang,Boyuan Zhang,Yong Chen,Yong Wang. Research on Fault-Tolerant Control of Multi-Actuator for Distributed Drive Electric Vehicles [J]. Automotive Engineering, 2023, 45(12): 2251-2259. |