Automotive Engineering ›› 2024, Vol. 46 ›› Issue (7): 1314-1322.doi: 10.19562/j.chinasae.qcgc.2024.07.018
Zhiling Fang1,2,Yanli Song2(),Jie Kang1,Xinghong Zhang1,Dan Zhang1
Received:
2023-12-05
Revised:
2024-01-28
Online:
2024-07-25
Published:
2024-07-22
Contact:
Yanli Song
E-mail:ylsong@whut.edu.cn
Zhiling Fang,Yanli Song,Jie Kang,Xinghong Zhang,Dan Zhang. Lightweight Design and Optimization of Integrated Die Casting Aluminum Alloy Front Cabin[J].Automotive Engineering, 2024, 46(7): 1314-1322.
"
序号 | t1/mm | t2/mm | t3/mm | t4/mm | t5/mm | t6/mm |
---|---|---|---|---|---|---|
1 | 3 | 4 | 5 | 6 | 1.2 | 1.2 |
2 | 3 | 4 | 5 | 6 | 1.2 | 1.4 |
3 | 3 | 5 | 3 | 4 | 1.8 | 1.6 |
4 | 3 | 6 | 4 | 3 | 1.6 | 1.8 |
5 | 3 | 3 | 6 | 5 | 1.4 | 1.2 |
6 | 4 | 3 | 3 | 6 | 1.6 | 1.2 |
7 | 4 | 4 | 4 | 4 | 1.4 | 1.2 |
8 | 4 | 5 | 6 | 3 | 1.2 | 1.4 |
9 | 4 | 6 | 3 | 5 | 1.2 | 1.6 |
10 | 4 | 3 | 5 | 3 | 1.8 | 1.8 |
11 | 5 | 3 | 6 | 4 | 1.2 | 1.8 |
12 | 5 | 4 | 3 | 3 | 1.8 | 1.2 |
13 | 5 | 5 | 5 | 5 | 1.6 | 1.2 |
14 | 5 | 6 | 3 | 3 | 1.4 | 1.4 |
15 | 5 | 3 | 4 | 6 | 1.2 | 1.6 |
16 | 6 | 4 | 5 | 3 | 1.4 | 1.6 |
17 | 6 | 4 | 3 | 5 | 1.2 | 1.8 |
18 | 6 | 5 | 4 | 3 | 1.2 | 1.2 |
19 | 6 | 6 | 6 | 6 | 1.8 | 1.2 |
20 | 6 | 3 | 3 | 4 | 1.6 | 1.4 |
21 | 3 | 3 | 4 | 5 | 1.8 | 1.4 |
22 | 3 | 4 | 6 | 3 | 1.6 | 1.6 |
23 | 3 | 5 | 3 | 6 | 1.4 | 1.8 |
24 | 6 | 6 | 5 | 4 | 1.2 | 1.2 |
25 | 6 | 6 | 6 | 6 | 1.8 | 1.2 |
1 | DAMA K K, BADU V S, RAO R N. State of the art on automotive lightweight body-in-white design[J]. Materials Today: Proceedings, 2018, 5(10): 20966-20971. |
2 | 李光霁, 刘新玲. 汽车轻量化技术的研究现状综述[J]. 材料科学与工艺, 2020, 28(5): 47-61. |
LI G J, LIU X L. Literature review on research and development of automotive lightweight technology[J]. Materials Science and Technology, 2020, 28(5): 47-61. | |
3 | 李先洲. 铝合金一体化压铸技术浅析[J]. 铸造, 2023, 72(4): 462-465. |
LI X Z. Brief analysis on integrated die casting technology of aluminum alloy[J]. Foundry, 2023, 72(4): 462-465. | |
4 | 王程程. 铝合金真空压铸气致缺陷及力学性能研究[D]. 重庆:重庆大学, 2022. |
WANG C C. Research on gas-induced defects and mechanical properties of aluminum alloy vacuum die casting[D]. Chongqing: Chongqing University, 2020. | |
5 | 潜圣汶,郑德兵. 基于高压薄壁铸铝的车身前轮罩成形技术研究[J]. 模具工业, 2021, 47(5): 67-71. |
QIAN S W, ZHENG D B. Study on formability of front wheel housing based on thin wall HPDC aluminum[J]. Die & Mould Industry, 2021, 47(5): 67-71. | |
6 | 张俊超, 钟鼓, 邹纯,等. 真空压铸铝合金减震塔缺陷分析及改进[J]. 特种铸造及有色合金, 2019, 39(3): 275-278. |
ZHANG J C, ZHONG G, ZOU C, et al. Casting defects analysis and quality improvement of aluminum alloy shock towers fabricated by vacuum assisted high pressure die casting[J]. Special Casting & Nonferrous Alloys, 2019, 39(3): 275-278. | |
7 | 曾维和, 苟黎刚, 罗宇,等. 超大尺寸一体式压铸铝合金后段车身疲劳仿真与试验研究[J].汽车工程, 2023, 45(7): 1263-1275. |
ZHENG W H, GOU L G, LUO Y, et al. Fatigue simulation and experimental study of super-size integral die casting aluminum alloy rear end body[J]. Automotive Engineering, 2023, 45(7): 1263-1275. | |
8 | BAO Z J, YANG H Y, DONG B X, et al. Development trend in composition optimization, microstructure manipulation, and strengthening methods of die steels under lightweight and integrated die casting[J]. Materials, 2023, 16(18): 6235. |
9 | LIU X, LIANG R, HU Y, et al. Collaborative optimization of vehicle crashworthiness under frontal impacts based on displacement oriented structure[J]. International Journal of Automotive Technology, 2021, 22: 1319-1335. |
10 | 雷正保, 李铁侠, 王瑞. 纯电动汽车车身多目标拓扑优化设计[J]. 大连理工大学学报, 2015, 55(5): 484-491. |
LEI Z B, LI T X, WANG R. Multi-objective topology optimization design of pure electric vehicle body[J]. Journal of Dalian University of Technology, 2015, 55(5): 484-491. | |
11 | 付军鹏. 电动汽车车身结构设计与轻量化研究[D]. 北京:北京交通大学, 2022. |
FU J P. Research on design of electric vehicle body structure and lightweight[D]. Beijing: Beijing Jiaotong University, 2022. | |
12 | 赵笠程. 纯电动汽车白车身多目标轻量化优化设计研究[D].长沙:湖南大学, 2020. |
ZHAO L C. Research on multi-objective lightweight optimization design of pure electric vehicle body-in-white[D]. Changsha:Hunan University, 2020. | |
13 | MAO H, FU W, LAN J, et al. Lightweight design of a shock tower based on topology and size optimization[C].2017 7th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2017). Atlantis Press, 2017: 162-166. |
14 | 林佳武, 李玄霜, 陈宗明,等. 真空高压铸造铝合金车身后纵梁轻量化设计[J]. 汽车工程, 2020, 42(3): 383-389,400. |
LIN X W, LI X S, CHEN Z M, et al. Lightweight design of body rear longitudinal beam of VAHP die-casting aluminum alloy[J]. Automotive Engineering, 2020, 42(3): 383-389,400. | |
15 | ESCHENAUER H A, OLHOFF N. Topology optimization of continuum structures: a review[J]. Appl. Mech. Rev., 2001, 54(4): 331-390. |
16 | 李铁柱, 华睿, 黄维. 基于拓扑优化的白车身扭转刚度性能设计[J]. 汽车实用技术, 2019(17): 180-182. |
LI T Z, HUA R, HUANG W. Torsional stiffness performance design of body-in-white based on topology optimization[J]. Automobile Applied Technology, 2019(17): 180-182. | |
17 | 洪清泉, 赵康, 张攀, 等. OptiStruct&HyperStudy 理论基础与工程应用[M]. 北京: 机械工业出版社, 2012. |
HONG Q Q, ZHAO K, ZHANG P, et al. OptiStruct&HyperStudy theoretical basis and engineering application[M]. Beijing: China Machine Press, 2012. | |
18 | WANG D, ZHANG J, WANG S, et al. Frontal vehicular crash energy management using analytical model in multiple conditions[J]. Sustainability, 2022, 14(24): 16913. |
19 | C-NCAP 管理规则(2021 年版)[S]. 天津: 中国汽车技术研究中心有限公司, 2021. |
C-NCAP management rules(2021)[S]. Tianjin: CATARC, 2021. | |
20 | LIU X, LIANG R, HU Y, et al. Collaborative optimization of vehicle crashworthiness under frontal impacts based on displacement oriented structure[J]. International Journal of Automotive Technology, 2021, 22: 1319-1335. |
21 | HUANG M. Vehicle crash mechanics[M]. CRC Press, 2002. |
22 | HUANG S, DONG J. Optimization study of vehicle crashworthiness based on two types of frontal impacts[C]. 2015 International Conference on Transportation Information and Safety (ICTIS). IEEE, 2015: 409-413. |
23 | ABBASI M, GHAFARI-NAZARI A, REDDY S, et al. A new approach for optimizing automotive crashworthiness: concurrent usage of ANFIS and Taguchi method[J]. Structural and Multidisciplinary Optimization, 2014, 49: 485-499. |
24 | LI Q Q, LI E, CHEN T, et al. Improve the frontal crashworthiness of vehicle through the design of front rail[J]. Thin-Walled Structures, 2021, 162: 107588. |
25 | DUAN L, SUN G, CUI J, et al. Crashworthiness design of vehicle structure with tailor rolled blank[J]. Structural and Multidisciplinary Optimization, 2016, 53: 321-338. |
26 | GUAN Z, LI G, CHENG A, et al. The lightweight of auto body based on topology optimization and sensitivity analysis[C]. SAE Paper 2015-01-1367. |
27 | 雷正保, 肖林辉, 阳彪,等. 纯电动汽车的碰撞相容性与NVH多目标拓扑优化[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(1): 31-35. |
LEI Z B, XIAO L H, YANG B, et al. Multi-objective topology optimization design of electric vehicle based on collision compatibility and NVH[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2016, 40(1): 31-35. |
[1] | Dengfeng Wang, Chunda Lu, Hongyu Liang. Multi-objective Optimization Design of Induction Groove for Aluminum/CFRP Hybrid Tube Under Multi-angle Compression Condition [J]. Automotive Engineering, 2023, 45(7): 1286-1298. |
[2] | Libin Duan,Huajin Zhou,Zhanpeng Du,Yu Zhang,Wei Xu,Xing Liu,Haobin Jiang. Multi Workig Condition Crashworthiness Optimization Design of Body Frame Based on SHCA-T Algorithm [J]. Automotive Engineering, 2023, 45(2): 304-312. |
[3] | Fangwu Ma,Hao Sun,Hongyu Liang,Wenting Ma,Qiang Wang,Yongfeng Pu. Study on Crashworthiness of Self-Similar Hierarchical Honeycomb Structure Under Multiple Collision Conditions [J]. Automotive Engineering, 2022, 44(6): 886-892. |
[4] | Zeyang Li,Zhao Liu,Ping Zhu. Lightweight Design of Vehicle Tail-door Inner Panel Made of Injection Molded Short Fiber Reinforced Polymer Composite [J]. Automotive Engineering, 2022, 44(5): 789-798. |
[5] | Xiaokai Chen,Chao Li,Yingchun Bai,Zifa Yang. Multi⁃material Topology Optimization of Automotive Control Arm [J]. Automotive Engineering, 2021, 43(7): 1088-1095. |
[6] | Fangwu Ma,Qiang Wang,Hongyu Liang,Yongfeng Pu. Multi⁃objective Optimization of Crash Box Filled with Gradient Negative Poisson’s Ratio Structure Under Multiple Conditions [J]. Automotive Engineering, 2021, 43(5): 754-761. |
[7] | Fangwu Ma,Zhuojun Wang,Meng Yang,Hongyu Liang,Zhenjiang Wu,Yongfeng Pu. Research on Lightweight Conceptual Design Method of Vehicle Rear Subframe [J]. Automotive Engineering, 2021, 43(5): 776-783. |
[8] | Rongchao Jiang,Tao Zhang,Haixia Sun,Dawei Liu,Huanming Chen,Dengfeng Wang. Study on Lightweighting of CFRP Bumper Beam Using Entropy⁃based TOPSIS Approach [J]. Automotive Engineering, 2021, 43(3): 421-428. |
[9] | Ding Xia,Shusheng Di,Lin Pan,Zhixin Zhao,Jinkun Lu,Jian Wu Changsheng Zhang. B⁃pillar Lightweight Design for Side Impact Crashworthiness [J]. Automotive Engineering, 2021, 43(2): 248-252. |
[10] | Xiangyu Cheng,Zhonghao Bai,Binhui Jiang,Feng Zhu,Clifford C. Chou. Study on Magnetorheological-fluid Bio-inspired Thin-walled Energy-absorbing Tube and Its Crashworthiness Controllability [J]. Automotive Engineering, 2021, 43(12): 1806-1816. |
[11] | Binbing Huang,Shaopeng Li,Shucai Xu. Forming Technologies and Crashworthiness Analysis of Automotive Tailor Welded B-pillar [J]. Automotive Engineering, 2021, 43(10): 1513-1518. |
[12] | Dengfeng Wang,Shenhua Li. Lightweight Design for the Front⁃end Structure of BIW Based on the Combination of the Design of Experiment and PSI Decision Tool [J]. Automotive Engineering, 2021, 43(1): 121-128. |
[13] | He Liangguo, Zhao Jie, Gu Xianguang. Lightweight and Crashworthiness Design of Vehicle BodyFront-end Based on Multi-cell Structure [J]. Automotive Engineering, 2020, 42(6): 832-839. |
[14] | Cui An, Xu Xiaoqian, Sun Wenlong, Yang Weili, Huang Xianqing, Liu Tianci. Study on Crashworthiness Optimization of Carbon-fiberSandwich Panel Structure with Polypropylene Foam Core [J]. Automotive Engineering, 2020, 42(6): 840-846. |
[15] | Chen Jing, Peng Bo, Wang Dengfeng, Tang Aotian, Chen Shuming. Lightweight Design of Carbon Fiber Reinforced Composite Battery Box [J]. Automotive Engineering, 2020, 42(2): 257-263. |
|