Automotive Engineering ›› 2024, Vol. 46 ›› Issue (9): 1617-1627.doi: 10.19562/j.chinasae.qcgc.2024.09.009
Guojuan Zhang1,Hongyu Hu1,Haomiao Li1,Mingjian Wang2,Fei Gao1(),Zhenhai Gao1
Received:
2024-05-30
Revised:
2024-08-05
Online:
2024-09-25
Published:
2024-09-19
Contact:
Fei Gao
E-mail:gaofei123284123@jlu.edu.cn
Guojuan Zhang,Hongyu Hu,Haomiao Li,Mingjian Wang,Fei Gao,Zhenhai Gao. A Survey on Ride Comfort Evaluation of Autonomous Vehicles[J].Automotive Engineering, 2024, 46(9): 1617-1627.
"
文献 | 车辆参数 | 年份 | 舒适性量化指标 | 舒适性/不舒适性阈值范围 |
---|---|---|---|---|
[ | 车速 加速度 加速度变化率 | 2009 | 车速5-20 m/s下的车辆纵向加速度/(m·s-2) | <-3.5(20 m/s)~-5(5 m/s) |
车速5-20 m/s下的车辆纵向减速度/(m·s-2) | <2(20 m/s)~4(5 m/s) | |||
车速5-20 m/s下的车辆纵向加速度变化率/(m·s-3) | <2.5(20 m/s)~5(5 m/s) | |||
[ | 加速度 加速度变化率 | 2020 | 横向加速度/(m·s-2) | |a|<0.9(公共交通) |
0.9<|a|<4(正常型) | ||||
4<|a|<5.6(激进型) | ||||
5.6<|a|<7.6(极度激进型) | ||||
纵向加速度/(m·s-2) | |a|<0.9(公共交通) | |||
-2.0<a<-0.9;0.9<a<1.47(正常型) | ||||
-5.08<a<-2.0;1.47<a<3.07(激进型) | ||||
3.07<a<7.6(极度激进型) | ||||
-7.6<a<-5.08(紧急制动) | ||||
横向加速度变化率/(m·s-3) | |z|<0.6(公共交通) | |||
0.6<|z|<0.9(正常型) | ||||
0.9<|z|<2.0(激进型) | ||||
纵向加速度变化率/(m·s-3) | |z|<0.6(公共交通) | |||
0.6<|z|<0.9(正常型) | ||||
0.9<|z|<2.0(激进型) | ||||
[ | 加速度 | 2016 | 纵向加速度 | 0~0.14g(轻轨交通) |
0.14g~0.25g(保守型) | ||||
0.25g~0.50g(自信型) | ||||
纵向减速度 | 0~-0.14g(轻轨交通) | |||
-0.14g~-0.33g(保守型) | ||||
-0.33g~-0.76g(自信型) | ||||
横向加速度 | 0~0.15g(轻轨交通) | |||
0.15g~0.42g(保守型) | ||||
0.42g~0.54g(自信型) | ||||
垂向加速度 | 0~0.16g(保守型) | |||
0.16g~0.66g(自信型) | ||||
[ | 加速度 加速度变化率 | 2022 | 横向加速度 | <0.15g |
横向加速度变化率 | <0.25g/s | |||
[ | 加速度 | 2015 | 横向加速度/(m·s-2) | <1.8(可接受) |
1.8~3.6(能够忍受) | ||||
>5(超出承受范围) | ||||
[ | 加速度 | 1997 | 加速度均方根值/(m·s-2) | <0.315(没有不舒适) |
0.315~0.63(有一些不舒适) | ||||
0.5~1.0(相当不舒适) | ||||
0.8~1.6(不舒适) | ||||
1.25~2.5(很不舒适) | ||||
>2.0(极不舒适) |
"
文献 | 生理信号 | 年份 | 应用场景 |
---|---|---|---|
[ | 心率、皮肤电、眼动 | 2022 | 乘员对L2级自动驾驶的信任与风险感知 |
[ | 心率变异性 | 2021 | L2级自适应巡航系统的乘坐舒适性 |
[ | 心率、皮肤电、眼动 | 2019 | 高度自动驾驶车辆的乘坐舒适性 |
[ | 肌电、汗液 | 2015 | 自动驾驶货车的乘坐舒适性 |
[ | 肌电 | 2021 | 自动驾驶车辆不同悬挂类型的乘坐舒适性 |
[ | 近红外脑功能成像 | 2023 | 乘员对自动驾驶车辆的信任程度 |
[ | 脑电 | 2016 | 乘员乘坐车辆的晕动状态评估 |
[ | 肌电 | 2013 | 标准障碍测试工况下的乘坐舒适性 |
[ | 静态体压 | 2000 | 车辆座椅的静态乘坐舒适性 |
[ | 静态体压 | 2012 | |
[ | 静态体压 | 2023 | |
[ | 动态体压 | 2022 | 车辆座椅的动态乘坐舒适性 |
1 | DICHABENG P, MERAT N, MARKKULA G. Factors that influence the acceptance of future shared automated vehicles-a focus group study with United Kingdom drivers[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 82: 121-140. |
2 | DELMAS M, CAMPS V, LEMERCIER C. Effects of environmental, vehicle and human factors on comfort in partially automated driving: a scenario-based study[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 86: 392-401. |
3 | HOLTHAUSEN B E, WINTERSBERGER P, WALKER B N, et al. Situational trust scale for automated driving (STS-AD): development and initial validation[C].12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2020: 40-47. |
4 | MARJANEN Y, MANSFIELD N J. Relative contribution of translational and rotational vibration to discomfort[J]. Industrial Health,2010,48(5):519-529. |
5 | LI Z, FU R, WANG C, et al. Effects of linear acceleration on passenger comfort during physical driving on an urban road[J]. International Journal of Civil Engineering, 2020, 18: 1-8. |
6 | ZONG C, GUO K, GUAN H. Research on closed-loop comprehensive evaluation method of vehicle handling and stability[C]. SAE Paper 2000-01-0694. |
7 | PERELLO-MARCH J R, BURNS C G, et al. Using fNIRS to verify trust in highly automated driving[J].IEEE Transactions on Intelligent Transportation Systems,2023, 24(1): 739-751. |
8 | HU H, ZHANG G, CHENG M, et al. Biosignal-based driving experience analysis between automated mode and manual mode[C]. SAE Paper 2024-01-2504. |
9 | SLATER K. Discussion paper the assessment of comfort[J]. Journal of the Textile Institute, 1986, 77(3): 157-171. |
10 | RICHARDS L G, JACOBSON I R A D, BARBER R W, et al. Comfort reactions to bus motion on curved roadways[J]. Ergonomics, 1979, 22(5): 517-519. |
11 | DE LOOZE M P, KUIJT-EVERS L F M, VAN DIEEN J. Sitting comfort and discomfort and the relationships with objective measures[J]. Ergonomics, 2003, 46(10): 985-997. |
12 | CARSTEN O, MARTENS M H. How can humans understand their automated cars? HMI principles, problems and solutions[J]. Cognition, Technology & Work, 2019, 21(1): 3-20. |
13 | HARTWICH F, BEGGIATO M, KREMS J F. Driving comfort, enjoyment and acceptance of automated driving-effects of drivers’ age and driving style familiarity[J]. Ergonomics, 2018, 61(8): 1017-1032. |
14 | PENG C, HORN S, MADIGAN R, et al. Conceptualising user comfort in automated driving: findings from an expert group workshop[J]. Transportation Research Interdisciplinary Perspectives, 2024. |
15 | Intelligent transport systems-full speed range adaptive cruise control (FSRA) systems-performance requirements and test procedures:JIS D0807—2011[S].2011.01.01. |
16 | GOLD C, HAPPEE R, BENGLER K. Modeling take-over performance in level 3 conditionally automated vehicles[J]. Accident Analysis & Prevention, 2018, 116: 3-13. |
17 | LIANG N, YANG J, YU D, et al. Using eye-tracking to investigate the effects of pre-takeover visual engagement on situation awareness during automated driving[J]. Accident Analysis & Prevention, 2021, 157: 106143. |
18 | ELBANHAWI M, SIMIC M, JAZAR R. In the passenger seat: investigating ride comfort measures in autonomous cars[J]. IEEE Intelligent Transportation Systems Magazine, 2015, 7(3): 4-17. |
19 | PENG C, MERAT N, ROMANO R, et al. Drivers’ evaluation of different automated driving styles: is it both comfortable and natural?[J]. Human Factors, 2022: 00187208221113448. |
20 | DETTMANN A, HARTWICH F, ROßNER P, et al. Comfort or not? automated driving style and user characteristics causing human discomfort in automated driving[J]. International Journal of Human-Computer Interaction, 2021, 37(4): 331-339. |
21 | PADDEU D, PARKHURST G, SHERGOLD I. Passenger comfort and trust on first-time use of a shared autonomous shuttle vehicle[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102604. |
22 | Subjective rating scale for evaluation of noise and ride comfort characteristics related to motor vehicle tires:SAE J1060[S].USA: SAE, 2014. |
23 | 亓莱滨. 李克特量表的统计学分析与模糊综合评判[J]. 山东科学, 2006, 19(2): 18-23,28. |
QI L B. Statistical analysis and fuzzy comprehensive evaluation of Likert scale[J]. Shandong Science, 2006, 19(2): 18-23,28. | |
24 | 兰凤崇, 李诗成, 陈吉清, 等. 自动驾驶汽车乘员个性化乘坐舒适性辨识方法[J]. 汽车工程, 2021, 43(8): 1168-1176. |
LAN F C, LI S C, CHEN J Q, et al. Identification method for occupant personalized ride comfort of autonomous vehicles[J]. Automotive Engineering, 2021, 43(8): 1168-1176. | |
25 | FRASIE A, BERTRAND-CHARETTE M, COMPAGNAT M, et al. Validation of the Borg CR10 Scale for the evaluation of shoulder perceived fatigue during work-related tasks[J]. Applied Ergonomics, 2024, 116: 104200. |
26 | PENG C, ÖZTÜRK İ, NORDHOFF S, et al. Exploring user comfort in automated driving: a qualitative study with younger and older users using the Wizard-Of-Oz method[C] .Adjunct Proceedings of the 15th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2023: 342-345. |
27 | Mechanical vibration and shock. evaluation of human exposure to whole-body vibration. part 1. general requirements:ISO 2631-1[S].2009.01.19. |
28 | 汽车平顺性试验方法: GB/T 4970—2009 [S]. 1985.03.02. |
Method of running test-automotive ride comfort: GB/T 4970—2009 [S]. 1985.03.02. | |
29 | BAE I, MOON J, JHUNG J, et al. Self-driving like a human driver instead of a robocar: personalized comfortable driving experience for autonomous vehicles[J]. arXiv preprint arXiv:, 2020. |
30 | TAN Z, WEI J, DAI N. Real-time dynamic trajectory planning for intelligent vehicles based on quintic polynomial[C].2022 IEEE 21st International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS). IEEE, 2022: 51-56. |
31 | DU X, TAN K K. Autonomous vehicle velocity and steering control through nonlinear model predictive control scheme[C].2016 IEEE transportation electrification conference and expo, Asia-Pacific (ITEC Asia-Pacific). IEEE, 2016: 001-006. |
32 | YUSOF N M, KARJANTO J, TERKEN J, et al. The exploration of autonomous vehicle driving styles: preferred longitudinal, lateral, and vertical accelerations[C].Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, 2016: 245-252. |
33 | XU J, YANG K, SHAO Y M, et al. An experimental study on lateral acceleration of cars in different environments in Sichuan, Southwest China[J]. Discrete Dynamics in nature and Society, 2015, 2015(1): 494130. |
34 | ALBERTO R, TIWANA V, SERGIO I, et al. Surface electromyography for risk assessment in work activities designed using the "revised NIOSH lifting equation"[J]. International Journal of Industrial Ergonomics, 2018, 68:34-45. |
35 | STAPEL J, GENTNER A, HAPPEE R. On-road trust and perceived risk in level 2 automation[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 89: 355-370. |
36 | YANG Z, FU W H, ZHANG Z, et al. Comfort optimization of adaptive cruise control based on heart rate variability and fuzzy control[C].Journal of Physics: Conference Series. IOP Publishing, 2021, 2010(1): 012176. |
37 | BEGGIATO M, HARTWICH F, KREMS J. Physiological correlates of discomfort in automated driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 66: 445-458. |
38 | ZHENG R, NAKANO K, OKAMOTO Y, et al. Evaluation of sternocleidomastoid muscle activity of a passenger in response to a car's lateral acceleration while slalom driving[J]. IEEE Transactions on Human-Machine Systems, 2013, 43(4): 405-415. |
39 | ZHENG R, YAMABE S, NAKANO K, et al. Biosignal analysis to assess mental stress in automatic driving of trucks: palmar perspiration and masseter electromyography[J]. Sensors, 2015, 15(3): 5136-5150. |
40 | KIA K, JOHNSON P W, KIM J H. The effects of different seat suspension types on occupants' physiologic responses and task performance: implications for autonomous and conventional vehicles[J]. Applied Ergonomics, 2021, 93: 103380. |
41 | CHUANG S W, CHUANG C H, YU Y H, et al. EEG alpha and gamma modulators mediate motion sickness-related spectral responses[J]. International Journal of Neural Systems, 2016, 26 (2): 1650007. |
42 | TEWARI V K, PRASAD N. Optimum seat pan and back-rest parameters for a comfortable tractor seat[J]. Ergonomics, 2000, 43 (2): 167-186. |
43 | NORO K, NARUSE T, LUEDER R, et al. Application of Zen sitting principles to microscopic surgery seating[J]. Appl Ergon, 2012, 43 (2): 308-319. |
44 | ZHANG T, REN J. Research on seat static comfort evaluation based on objective interface pressure[J]. SAE International Journal of Commercial Vehicles, 2023, 16(02-16-04-0023). |
45 | 高开展, 罗巧, 张志飞, 等. 基于体压分布的汽车座椅振动舒适性评价[J]. 汽车工程, 2022, 44(12): 1936-1943. |
GAO K Z, LUO Q, ZHANG Z F, et al. Vibration comfort evaluation of vehicle seat based on body pressure distribution[J]. Automotive Engineering, 2022, 44(12): 1936-1943. | |
46 | 韩俊杰,骆开庆,邱健,等.基于双目相机的眼动仪头部姿态估计方法[J].激光与光电子学进展,2021,58(14): 310-317. |
HAN J J, LUO K Q, QIU J,et al. Head pose estimation method of eye tracker based on binocular camera[J]. Laser & Optoelectronics Progress,2021,58(14): 310-317. | |
47 | BUBB H, ESTERMANN S. Influence of forces on comfort feeling in vehicles[C]. SAE Paper 2000-01-2171. |
48 | ZACHER I, BUBB H. Strength based discomfort model of posture and movement[J]. SAE Transactions, 2004: 87-92. |
49 | PORTER J M, GYI D E. Exploring the optimum posture for driver comfort[J]. International Journal of Vehicle Design, 1998, 19(3): 255-266. |
50 | WOLF P, HENNES N, RAUSCH J, et al. The effects of stature, age, gender, and posture preferences on preferred joint angles after real driving[J]. Applied Ergonomics, 2022, 100: 103671. |
51 | SOARES G, DE LIMA D, NETO A M. A mobile application for driver's drowsiness monitoring based on PERCLOS estimation[J]. IEEE Latin America Transactions, 2019, 17(2): 193-202. |
52 | BERSENEV E Y, DUBININ V I, ERMAKOV V M, et al. Investigation of the psychophysiological response of passengers of fast trains with the different comfort level[J]. Hygiene and Sanitation, 2021, 100(4): 318-326. |
53 | GARCÍA-HERRERO S, GUTIÉRREZ J M, HERRERA S, et al. Sensitivity analysis of driver's behavior and psychophysical conditions[J]. Safety Science, 2020, 125: 104586. |
54 | GORELIK S, GRUDININ V, LECSHINSKIY V, et al. Method for assessing the influence of psychophysical state of drivers on control safety based on monitoring of vehicle movement parameters[J]. Transportation Research Procedia, 2020, 50: 152-159. |
55 | THOMAS B J, HEIDEN S, DYSON K, et al. The psychophysics of affordance perception: Stevens’ power law scaling of perceived maximum forward reachability with an object[J]. Attention, Perception, & Psychophysics, 2023, 85(8): 2869-2878. |
56 | AO D, WONG P K, HUANG W, et al. Analysis of co-relation between objective measurement and subjective assessment for dynamic comfort of vehicles[J]. International Journal of Automotive Technology, 2020, 21: 1553-1567. |
57 | 郭子彬, 陈慧, 夏韬锴, 等. 弯道工况下驾驶员主观风险感知的量化研究[J]. 汽车工程, 2022, 44(9): 1447-1455. |
GUO Z B, CHEN H, XIA T K, et al. Study on quantification of driver’s subjective risk perception in curve driving condition[J]. Automotive Engineering, 2022, 44(9): 1447-1455. | |
58 | 唐传茵, 张义民, 赵广耀, 等. 基于烦恼率的悬架振动舒适性评价方法[J]. 机械工程学报, 2014(5). |
TANG C Y, ZHANG Y M, ZHANG G Y, et al. An evaluation method of suspension vibration comfort based on annoyance rate[J]. Journal of Mechanical Engineering, 2014(5). | |
59 | DONG R C, GUO L X. Human body modeling method to simulate the biodynamic characteristics of spine in vivo with different sitting postures[J]. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33(11): e2876. |
60 | PANKOKE S, BUCK B, WOELFEL H P. Dynamic FE model of sitting man adjustable to body height, body mass and posture used for calculating internal forces in the lumbar vertebral disks[J]. Journal of Sound and Vibration, 1998, 215(4): 827-839. |
61 | AMIRI S, NASERKHAKI S, PARNIANPOUR M. Effect of whole-body vibration and sitting configurations on lumbar spinal loads of vehicle occupants[J]. Computers in Biology and Medicine, 2019, 107: 292-301. |
62 | GUO L X, DONG R C, ZHANG M. Effect of lumbar support on seating comfort predicted by a whole human body-seat model[J]. International Journal of Industrial Ergonomics, 2016, 53: 319-327. |
63 | LIU C, QIU Y, GRIFFIN M J. Finite element modelling of human-seat interactions: vertical in-line and fore-and-aft cross-axis apparent mass when sitting on a rigid seat without backrest and exposed to vertical vibration[J]. Ergonomics, 2015, 58(7): 1207-1219. |
64 | MATSUMOTO Y, GRIFFIN M J. Modelling the dynamic mechanisms associated with the principal resonance of the seated human body[J]. Clinical Biomechanics, 2001, 16: S31-S44. |
65 | KIM T H, KIM Y T, YOON Y S. Development of a biomechanical model of the human body in a sitting posture with vibration transmissibility in the vertical direction[J]. International Journal of Industrial Ergonomics, 2005, 35(9): 817-829. |
66 | LIANG C C, CHIANG C F. Modeling of a seated human body exposed to vertical vibrations in various automotive postures[J]. Industrial Health, 2008, 46(2): 125-137. |
67 | GRUJICIC M, PANDURANGAN B, XIE X, et al. Musculoskeletal computational analysis of the influence of car-seat design/adjustments on long-distance driving fatigue[J]. International Journal of Industrial Ergonomics, 2010, 40(3): 345-355. |
68 | DU X, SUN C, ZHENG Y, et al. Evaluation of vehicle vibration comfort using deep learning[J]. Measurement, 2021, 173: 108634. |
69 | ZHANG H, FU R. An ensemble learning-online semi-supervised approach for vehicle behavior recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(8): 10610-10626. |
70 | ZHANG H, GUO Y, WANG C, et al. Stacking-based ensemble learning method for the recognition of the preceding vehicle lane-changing manoeuvre: a naturalistic driving study on the highway[J]. IET Intelligent Transport Systems, 2022, 16(4): 489-503. |
71 | HUANG F, ZHAO C, HUANG Y, et al. Study on the evaluation model of vehicle comfort based on the neural network[J]. IFAC-PapersOnLine, 2018, 51(31): 553-558. |
72 | NGUYEN T, NGUYEN-PHUOC D Q, WONG Y D. Developing artificial neural networks to estimate real-time onboard bus ride comfort[J]. Neural Computing and Applications, 2021, 33(10): 5287-5299. |
73 | TAGHAVIFAR H, RAKHEJA S. Supervised ANN-assisted modeling of seated body apparent mass under vertical whole body vibration[J]. Measurement, 2018, 127: 78-88. |
74 | MOU L, ZHOU C, ZHAO P, et al. Driver stress detection via multimodal fusion using attention-based CNN-LSTM[J]. Expert Systems with Applications, 2021, 173: 114693. |
75 | LIU H, HUANG W. The research of drivability evaluation index and quantitative method[C]. SAE Paper 2016-01-1906. |
76 | KIA K, JOHNSON P W, KIM J H. The effects of different seat suspension types on occupants' physiologic responses and task performance: implications for autonomous and conventional vehicles[J]. Applied Ergonomics, 2021, 93: 103380. |
77 | RUBIRA FREIXAS M. Effects of driving style on passengers comfort: a research paper about the influence of the bus driver´ s driving style on public transport users[J]. 2016. |
78 | ZHU W, ZHANG X, HU C, et al. Passenger comfort quantification for automated vehicle based on stacking of psychophysics mechanism and encoder-transformer model[J]. IEEE Transactions on Intelligent Transportation Systems, 2023. |
79 | BELLEM H, THIEL B, SCHRAUF M, et al. Comfort in automated driving: an analysis of preferences for different automated driving styles and their dependence on personality traits[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 55: 90-100. |
80 | BAE I, MOON J, KIM S. Driving preference metric-aware control for self-driving vehicles[J]. International Journal of Intelligent Engineering & Systems, 2019, 12(6). |
81 | RAO M V C, PRAHLAD V. A tunable fuzzy logic controller for vehicle-active suspension systems[J]. Fuzzy Sets and Systems, 1997, 85(1): 11-21. |
82 | ORABY W A H, EL-DEMERDASH S M, SELIM A M, et al. Improvement of vehicle lateral dynamics by active front steering control[J]. SAE Transactions, 2004: 1101-1110. |
[1] | Jizheng Liu,Zhenpo Wang,Fengchun Sun,Lei Zhang. Research on Delay Compensation Control for Heterogeneous Connected and Automated Vehicle Platoons [J]. Automotive Engineering, 2023, 45(9): 1573-1582. |
[2] | Xianglei Zhu,Zhixin Wu,Yufei Zhang,Shuai Zhao,Keqiu Li,Bohua Sun. Research on Scenario Library Optimization Method Based on Scenario Dimension Reduction and Sampling Method [J]. Automotive Engineering, 2023, 45(8): 1408-1416. |
[3] | Jianhua Chen,Zhongming Xu,Zhifei Zhang. Suspension State Estimation Based on Wheelbase Preview at Variable Speed [J]. Automotive Engineering, 2023, 45(6): 1040-1049. |
[4] | Yilin He,Jian Ma,Shukai Yang,Wei Zheng,Qifan Xue. Research on Stability Model Predictive Control of Intelligent Electric Vehicle with Preview Characteristics [J]. Automotive Engineering, 2023, 45(5): 719-734. |
[5] | Zixian Li,Shiju Pan,Yuan Zhu,Binbing He,Youchun Xu. Semi-active Suspension Control for Intelligent Vehicles Based on State Feedback and Preview Feedforward [J]. Automotive Engineering, 2023, 45(5): 735-745. |
[6] | Lijun Qian,Chen Chen,Jian Chen,Xinyu Chen,Chi Xiong. Discrete Platoon Control at an Unsignalized Intersection Based on Q-learning Model [J]. Automotive Engineering, 2022, 44(9): 1350-1358. |
[7] | Yingshi Guo,Yahui Hu,Rui Fu,Chang Wang. Research on Driver Lateral Control Model Under Crosswind Conditions Based on Cognitive-Control Framework [J]. Automotive Engineering, 2022, 44(8): 1251-1261. |
[8] | Shengzhao Chen,Minyi Zheng,Qihui Ling,Zhewu Chen. An Investigation on the Characteristics of Hydraulically Interconnected Suspension System with Dual Accumulators [J]. Automotive Engineering, 2022, 44(2): 272-279. |
[9] | Longxin Guan,Zufei Gu,Chao Zhang,Aichun Wang,Chenruo Peng,Huihua Jiang,Xiaojian Wu. Model Predictive Path Following Control of Intelligent Vehicles Considering System Complex Disturbances [J]. Automotive Engineering, 2022, 44(12): 1844-1855. |
[10] | Xiaokai Chen,Mingkai Zeng,Xiang Liu,An Jiang. Research on Semi-active Suspension Preview Control Based on VSL-MPC [J]. Automotive Engineering, 2022, 44(10): 1537-1546. |
[11] | Wen Sun,Chenyang Li,Junnian Wang,Haozhe Qian,Wentong Zhang. Research on Ride Comfort of an Off-road Vehicle with Compound Suspension [J]. Automotive Engineering, 2022, 44(1): 105-114. |
[12] | Jie Hu,Xinkai Zhong,Ruinan Chen,Linglei Zhu,Wencai Xu,Minchao Zhang. Path Tracking Control of Intelligent Vehicles Based on Fuzzy LQR [J]. Automotive Engineering, 2022, 44(1): 17-25. |
[13] | Xiaohui Liu,Liangyao Yu,Sheng Zheng,Zhenghong Lu,Jian Song. Research on Redundant Anti-lock Braking Algorithm Based on eBooster [J]. Automotive Engineering, 2022, 44(1): 82-93. |
[14] | Helong Liu,Wenku Shi,Rui Gao,Zhiyong Chen,Huang Chen,Yunlong Sun. Modeling and Experimental Study on Hysteresis Characteristic of Composite Leaf Springs [J]. Automotive Engineering, 2021, 43(6): 934-942. |
[15] | Xiangyang Xu,Wenhao Hu,Honglei Dong,Yan Wang,Lingyun Xiao,Penghui Li. Review of Key Technologies for Autonomous Vehicle Test Scenario Construction [J]. Automotive Engineering, 2021, 43(4): 610-619. |
|