Automotive Engineering ›› 2024, Vol. 46 ›› Issue (12): 2209-2219.doi: 10.19562/j.chinasae.qcgc.2024.12.008
Previous Articles Next Articles
Geng Luo,Yaozhi Xiao,Kaifeng Xue,Yisong Chen()
Received:
2024-07-01
Revised:
2024-07-25
Online:
2024-12-25
Published:
2024-12-20
Contact:
Yisong Chen
E-mail:chenyisong_1988@163.com
Geng Luo,Yaozhi Xiao,Kaifeng Xue,Yisong Chen. Study on Design and Crashworthiness of Polycrystal Lattice Metamaterials Based on Grain Boundary Strengthening[J].Automotive Engineering, 2024, 46(12): 2209-2219.
1 | 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656-689. |
REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-689. | |
2 | 马芳武, 王强, 梁鸿宇, 等. 梯度负泊松比结构填充吸能盒多工况优化设计[J]. 汽车工程, 2021, 43(5): 754-761. |
MA Fangwu, WANG Qiang, LIANG Hongyu, et al. Multi⁃objective optimization of crash box filled with gradient negative poisson’s ratio structure under multiple conditions[J]. Automotive Engineering, 2021, 43(5): 754-761. | |
3 | LIANG H, ZHAO Y, CHEN S, et al. Review of crashworthiness studies on cellular structures[J]. Automotive Innovation, 2023, 6(3): 379-403. |
4 | ZHANG H,WU J,ZHANG Y H, et al. Multistable mechanical metamaterials: a brief review[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2021, 38(1): 1-17. |
5 | 靳明珠, 侯秀慧, 赵文皓, 等. 多层级曲梁多稳态超材料的可重用性研究[J/OL]. 力学学报, 1-18[2024-06-24]. |
JIN M Z, HOU X H, ZHAO W H, et al. Research on reusable properties of multistable metamaterial of hierarchical curved beams[J/OL]. Chinese Journal of Theoretical and Applied Mechanics, 1-18[2024-06-24]. | |
6 | WANG Y, CHEN Y, QIN C, et al. Manufacturing and mechanical properties of adjustable stiffness hierarchical orthogrid stiffened cylinders[J]. Polymer Composites, 2024, 45(7): 5305-6317. |
7 | WEI Y, FAN Y, SHEN X, et al. A novel cylindrical mechanical metamaterial: design, fabrication, and compressive properties[C]//Structures. Elsevier, 2024, 63: 106336. |
8 | 任毅, 冉威, 蒲林, 等. SLM成形Ti-6Al-4V层状混合点阵结构的力学性能和吸能特性研究[J]. 重庆交通大学学报(自然科学版), 2024, 43(6):118-126. |
REN Y, RAN W, PU L, et al. Mechanical properties and energy absorption characteristics of SLM-formed Ti-6Al-4V layered hybrid lattice structure[J]. Journal of Chongqing Jiaotong University(Natural Science), 2024, 43(6):118-126. | |
9 | 黄安坤, 温耀杰, 张百成, 等. 增材制造金属点阵结构性能研究进展[J]. 航空制造技术, 2023, 66(11):90-101. |
HUANG Ankun, WEN Yaojie, ZHANG Baicheng, et al. Research progress on properties of metal lattice structure by additive manufacturing[J]. Aeronautical Manufacturing Technology, 2023, 66(11):90-101. | |
10 | 段晟昱, 王潘丁, 刘畅, 等. 增材制造三维点阵结构设计、优化与性能表征方法研究进展[J]. 航空制造技术, 2022, 65(14):36-48,57. |
DUAN Shengyu, WANG Panding, LIU Chang, et al. Research progress on design, optimization and performance characterization of additive manufactured 3D lattice structures[J]. Aeronautical Manufacturing Technology, 2022, 65(14):36-48,57. | |
11 | 易长炎, 柏龙, 陈晓红, 等. 金属三维点阵结构拓扑构型研究及应用现状综述[J]. 功能材料, 2017, 48(10): 10055-10065. |
YI Changyan, BAI Long, CHEN Xiaohong, et al. Review on the metal three-dimensional lattice topoloay configurations research and application status[J]. Journal of Functional Materials, 2017, 48(10): 10055-10065. | |
12 | DAEHN G S, DAEHN K E, KUTTNE O. Environmentally responsible lightweight passenger vehicle design and manufacturing[J]. Automotive Innovation, 2023, 6(3): 300-310. |
13 | HAMED J D, RAMONA J H, ANNA K, et al. Hybrid additive manufacturing of forming tools[J]. Automotive Innovation, 2023, 6(3): 311-323. |
14 | 梁鸿宇, 刘百川, 马芳武, 等. 多工况碰撞载荷下点阵结构填充吸能盒设计策略研究[J].汽车工程, 2023, 45(2):293-303. |
LIANG Hongyu, LIU Baichuan, MA Fangwu, et al. Research on design strategy of lattice structure filled crash box under multi-angle lmpact loading[J]. Automotive Engineering, 2023, 45(2):293-303. | |
15 | BAI L, YI C, CHEN X, et al. Effective design of the graded strut of BCC lattice structure for improving mechanical properties[J]. Materials, 2019, 12(13): 2192. |
16 | ZHANG P, QI D, XUE R, et al. Mechanical design and energy absorption performances of rational gradient lattice metamaterials[J]. Composite Structures, 2021, 277: 114606. |
17 | WANG M, ZHANG J, WANG W, et al. Compression behaviors of the bio-inspired hierarchical lattice structure with improved mechanical properties and energy absorption capacity[J]. Journal of Materials Research and Technology, 2022, 17: 2755-2771. |
18 | SUN Z P, GUO Y B, SHIM V P W. Characterisation and modeling of additively-manufactured polymeric hybrid lattice structures for energy absorption[J]. International Journal of Mechanical Sciences, 2021, 191: 106101. |
19 | XIAO L, SHI G, FENG G, et al. Large deformation response of a novel triply periodic minimal surface skeletal-based lattice metamaterial with high stiffness and energy absorption[J]. International Journal of Solids and Structures, 2024, 296: 112830. |
20 | LI Z, YANG F. Grain rotations during uniaxial deformation of gradient nano-grained metals using crystal plasticity finite element simulations[J]. Extreme Mechanics Letters, 2017, 16: 41-48. |
21 | PHAM M S, LIU C, TODD I, et al. Damage-tolerant architected materials inspired by crystal microstructure[J]. Nature, 2019, 565(7739): 305-311. |
22 | BIAN Y, LI P, YANG F, et al. Deformation mode and energy absorption of polycrystal-inspired square-cell lattice structures[J]. Applied Mathematics and Mechanics, 2020, 41: 1561-1582. |
23 | SONG K, LI D, LIU T, et al. Crystal-twinning inspired lattice metamaterial for high stiffness, strength, and toughness[J]. Materials & Design, 2022, 221: 110916. |
24 | LIU C, LERTTHANASARN J, PHAM M S. The origin of the boundary strengthening in polycrystal-inspired architected materials[J]. Nature Communications, 2021, 12(1): 4600. |
25 | LI K, GAO X L, WANG J. Dynamic crushing behavior of honeycomb structures with irregular cell shapes and non-uniform cell wall thickness[J]. International Journal of Solids and Structures, 2007, 44(14-15): 5003-5026. |
26 | LUO G, CHAI C, CHEN Y, et al. Investigations on the quasi-static/dynamic mechanical properties of 3D printed random honeycombs under in-plane compression[J]. Thin-Walled Structures, 2023, 190: 110931. |
27 | FENG G, LI S, XIAO L, et al. Energy absorption performance of honeycombs with curved cell walls under quasi-static compression[J]. International Journal of Mechanical Sciences, 2021, 210: 106746. |
|