1 |
冯毅, 张德良, 高翔. 基于安全、轻量化、可靠性多目标的新能源汽车电池包壳体开发[J]. 汽车工程学报, 2024, 14(2): 155-167.
|
|
FEN Y, ZHANG D L, GAO X. Development of new energy vehicle battery cases based on safety, lightweighting and reliability[J]. Chinese Journal of Automotive Engineering, 2024, 14(2): 155-167.
|
2 |
余同希, 卢国兴. 材料与结构的能量吸收[M]. 北京: 化学工业出版社, 2006.
|
|
YU T X, LU G X. Energy absorption of materials and structures[M]. Beijing: Chemical Industry Press, 2006.
|
3 |
LI Z, MA W, YAO S, et al. Crashworthiness performance of corrugation- reinforced multicell tubular structures[J]. International Journal of Mechanical Sciences, 2021, 190: 106038.
|
4 |
赵雪梅, 吴昌生, 邸曙升. ODB工况下车体前纵梁路径变形模式控制方法及应用[J], 汽车工程学报, 2019, 9(5): 320-326.
|
|
ZHAO X M, WU C S, DI S G. Control methods of deformation modes of front longitudinal beam in ODB test[J]. Chinese Journal of Automotive Engineering, 2019, 9(5): 320-326.
|
5 |
崔克天, 周丹凤. 基于侧碰多工况的汽车B柱结构设计[J]. 汽车实用技术, 2023, 48(20): 65-70.
|
|
CUI K T, ZHOU D F. Structure design of automobile B-pillar based on multi-work condition in side impact[J]. Automobile Applied Technology, 2023, 48(20): 65-70.
|
6 |
夏艳红, 邹光辉, 江能辉, 等. 针对轿车、MPV及越野车型的aPLI腿型变形模式的设计策略及应用[C]. 2023中国汽车工程学会年会暨展览会, 2023.
|
|
XIA Y H, ZOU G H, JIANG N H, et al. Design strategy and application of aPLI leg deformation mode of sedan, MPV and off-road vehicle[C]. SAECCE2023, Beijing, 2023.
|
7 |
陈国强, 申正义, 孙利, 等. 基于BP神经网络优化遗传算法的智能座舱感性意象预测[J]. 汽车工程, 2023, 45(8): 1479-1488.
|
|
CHEN G Q, SHEN Z Y, SUN L, et al. Intelligent cockpit perceptual image prediction based on bp neural network optimization genetic algorithm[J]. Automotive Engineering, 2023, 45(8): 1479-1488.
|
8 |
陈琳, 何熳平, 吴淑孝, 等. 基于自适应模糊C-均值算法的退役锂离子电池快速聚类[J]. 汽车工程, 2024, 46(4): 643-651.
|
|
CHEN L, HE M P, WU S X, et al. Fast clustering of retired lithium-ion batteries based on adaptive fuzzy C-means algorithm[J]. Automotive Engineering, 2024, 46(4): 643-651.
|
9 |
ZHANG H, FU H, HE X, et al. Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening[J]. Social Science Electronic Publishing, 2024.
|
10 |
NIE Y, TANG Z, LIU F, et al. A data-driven dynamics simulation framework for railway vehicles[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 2018, 56(3): 406-427.
|
11 |
LI Z, MA W, YAO S, et al. A machine learning based optimization method towards removing undesired deformation of energy-absorbing structures[J]. Structural and Multidisciplinary Optimization, 2021, 64: 919-934.
|
12 |
BENGIO Y. Learning deep architectures for AI[J]. Foundations & Trends in Machine Learning, 2009, 2(1): 1-127.
|
13 |
ZAPICO P, PENA F, VALINO G, et al. Virtual-point-based geometric error compensation model for additive manufacturing machines[J]. Rapid Prototyping Journal, 2023.
|
14 |
AKIBA T, SANO S, YANASE T, et al. Optuna: a next-generation hyperparameter optimization framework[J]. ACM, 2019.
|
15 |
SHI Y, KE G, CHEN Z, et al. Quantized training of gradient boosting decision trees[J]. Advances in Neural Information Processing Systems, 2022, 35: 18822-18833.
|
16 |
ISHIBUCHI H, IMADA R, SETOGUCHI Y, et al. Performance comparison of NSGA-Ⅱ and NSGA-Ⅲ on various many-objective test problems[C]. Proceedings of the Evolutionary Computation, F, 2016.
|
17 |
WALEE N A, ONISHA T A, AKINOLA A, et al. Impact of agile methodology in IT industries: a comparative study[C]. Proceedings of the SoutheastCon 2024, F, 2024.
|
18 |
DATTA S, GIANNELLA C, KARGUPTA H. K-means clustering over a large, dynamic network[C]. Proceedings of the Siam International Conference on Data Mining, F, 2006.
|
19 |
CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[J]. ACM, 2016.
|
20 |
ALSHBOUL O, ALMASABHA G, SHEHADEH A, et al. A comparative study of LightGBM, XGBoost, and GEP models in shear strength management of SFRC-SBWS[J]. Structures, 2024, 61: 106009.
|
21 |
LI Q, MENG Q, CAI J, et al. Predicting hourly cooling load in the building: a comparison of support vector machine and different artificial neural networks[J]. Energy Conversion and Management, 2009, 50(1): 90-96.
|