Automotive Engineering ›› 2024, Vol. 46 ›› Issue (12): 2143-2153.doi: 10.19562/j.chinasae.qcgc.2024.12.001
Zihao Meng,Dengfeng Wang(),Xiaopeng Zhang,Zifeng Zhang,Fengmin Lian,Jing Chen
Received:
2024-04-30
Revised:
2024-06-19
Online:
2024-12-25
Published:
2024-12-20
Contact:
Dengfeng Wang
E-mail:caewdf@jlu.edu.cn
Zihao Meng,Dengfeng Wang,Xiaopeng Zhang,Zifeng Zhang,Fengmin Lian,Jing Chen. Integrated Optimization Design of Lightweight and Fatigue Life for the Integrated Structure of Cell-To-Frame[J].Automotive Engineering, 2024, 46(12): 2143-2153.
"
工况 | 满载弯曲 | 满载扭转 | 紧急制动 | 紧急转弯 |
---|---|---|---|---|
左前悬架前吊耳约束情况 | UY, UZ | UY, UZ | UY, UZ | UY, UZ |
左前悬架后吊耳约束情况 | UY, UZ | UY, UZ | UY, UZ | UY, UZ |
右前悬架前吊耳约束情况 | UY, UZ | UY, UZ | UY, UZ | |
右前悬架后吊耳约束情况 | UY, UZ | UY, UZ | UY, UZ | |
左后悬架前吊耳约束情况 | UX, UY, UZ | UX, UY, UZ | UX, UY, UZ | UX, UY, UZ |
左后悬架后吊耳约束情况 | UY, UZ | UY, UZ | UY, UZ | UY, UZ |
右后悬架前吊耳约束情况 | UX, UY, UZ | UX, UY, UZ | UX, UY, UZ | UX, UY, UZ |
右后悬架后吊耳约束情况 | UY, UZ | UY, UZ | UY, UZ | UY, UZ |
惯性载荷施加 | 0.6g 制动惯性力 | 0.4g侧向惯性力 | ||
动载荷系数 | 2 | 1.2 | 1.2 | 1.2 |
"
序号 | DV1 | DV2 | DV3 | DV4 | DV5 | ··· | DV18 | DV19 | DV20 | DV21 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 5.74 | 3.76 | 8.26 | 16.96 | 6.51 | ··· | 4.84 | 5.31 | 7.35 | 11.26 |
2 | 6.58 | 4.72 | 7.42 | 13.12 | 5.82 | ··· | 5.69 | 6.63 | 8.29 | 10.51 |
3 | 7.42 | 3.28 | 6.58 | 18.88 | 6.48 | ··· | 5.25 | 5.92 | 8.20 | 9.31 |
4 | 8.26 | 4.24 | 5.74 | 15.04 | 6.84 | ··· | 5.63 | 6.46 | 7.30 | 10.66 |
5 | 5.07 | 4.91 | 6.41 | 20.03 | 6.85 | ··· | 5.22 | 4.54 | 9.07 | 10.81 |
··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· |
172 | 7.29 | 3.21 | 8.45 | 14.86 | 5.26 | ··· | 5.33 | 5.35 | 7.62 | 10.38 |
173 | 8.13 | 4.17 | 7.61 | 20.63 | 6.22 | ··· | 5.04 | 5.20 | 8.43 | 9.28 |
··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· |
275 | 4.95 | 3.58 | 8.85 | 15.21 | 5.72 | ··· | 4.88 | 5.63 | 8.57 | 9.50 |
276 | 5.79 | 4.54 | 8.01 | 11.37 | 6.86 | ··· | 5.33 | 4.81 | 6.62 | 9.81 |
277 | 6.63 | 3.10 | 7.17 | 17.13 | 4.82 | ··· | 5.50 | 4.15 | 7.58 | 8.17 |
278 | 7.47 | 4.06 | 6.33 | 13.29 | 5.49 | ··· | 5.27 | 4.64 | 8.83 | 9.95 |
279 | 8.31 | 5.02 | 5.49 | 19.05 | 5.84 | ··· | 5.64 | 5.18 | 7.93 | 11.30 |
"
序号 | masstotal/kg | dispt max/mm | stressbd max/MPa | stresst max/MPa | stressbk max/MPa | stresst max/MPa | freq1/Hz | lifemin/循环 |
---|---|---|---|---|---|---|---|---|
1 | 13.42 | 12.91 | 389.34 | 487.31 | 424.14 | 356.89 | 10.75 | 289 900 |
2 | 13.47 | 11.58 | 339.45 | 438.98 | 366.55 | 316.34 | 10.58 | 2 139 000 |
3 | 13.46 | 11.72 | 252.64 | 330.27 | 275.04 | 260.98 | 10.59 | 5 066 000 |
4 | 13.55 | 10.51 | 205.07 | 279.77 | 212.07 | 217.28 | 10.50 | 75 490 000 |
5 | 13.42 | 12.81 | 369.77 | 440.92 | 382.32 | 348.91 | 10.49 | 329 300 |
··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· |
172 | 13.45 | 12.02 | 380.04 | 478.04 | 405.48 | 339.72 | 10.36 | 5 538 000 |
173 | 13.53 | 10.70 | 212.31 | 316.42 | 219.15 | 214.69 | 10.36 | 39 390 000 |
··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· |
275 | 13.34 | 14.17 | 402.87 | 416.23 | 318.26 | 412.85 | 10.04 | 265 000 |
276 | 13.44 | 12.26 | 306.17 | 325.61 | 261.44 | 312.09 | 10.63 | 443 700 |
277 | 13.41 | 13.15 | 394.03 | 492.93 | 423.23 | 365.26 | 9.99 | 874 400 |
278 | 13.49 | 11.25 | 321.18 | 413.66 | 345.74 | 296.75 | 10.52 | 11 410 000 |
279 | 13.57 | 10.21 | 273.89 | 308.58 | 251.67 | 239.46 | 10.37 | 89 560 000 |
"
设计变量 | 代号 | 初始值/mm | 优化值/mm | 圆整值/mm |
---|---|---|---|---|
纵梁厚度 | DV1 | 7 | 6.29 | 7 |
加强梁厚度 | DV2 | 4 | 2.80 | 3 |
前横梁厚度 | DV3 | 7 | 4.90 | 5 |
前横梁连接板厚度 | DV4 | 16 | 10.80 | 11 |
前圆管梁厚度 | DV5 | 6 | 4.80 | 5 |
前圆管梁连接板厚度 | DV6 | 8 | 6.40 | 7 |
后圆管梁厚度 | DV7 | 6 | 4.80 | 5 |
后圆管梁连接板厚度 | DV8 | 8 | 6.40 | 7 |
第1电池舱底梁厚度 | DV9 | 10 | 9.2 | 10 |
第1电池舱底梁连接板厚度 | DV10 | 8 | 9.6 | 10 |
第2电池舱底梁厚度 | DV11 | 10 | 8.0 | 8 |
第2电池舱底梁连接板厚度 | DV12 | 8 | 6.4 | 7 |
第3电池舱底梁连接板厚度 | DV13 | 8 | 9.6 | 10 |
第1钢板横梁厚度 | DV14 | 5 | 4.0 | 4 |
第1钢板横梁连接板厚度 | DV15 | 7 | 8.99 | 9 |
第2钢板横梁厚度 | DV16 | 5 | 4.0 | 4 |
第2钢板横梁连接板厚度 | DV17 | 6 | 5.0 | 5 |
尾梁厚度 | DV18 | 5 | 4.0 | 4 |
尾梁连接板厚度 | DV19 | 5 | 4.0 | 4 |
电池舱底梁连接板加强肋厚度 | DV20 | 8 | 9.6 | 10 |
第3电池舱底梁厚度 | DV21 | 10 | 10.99 | 11 |
"
性能指标 | 对标车架 | CTF结构 | 对比 |
---|---|---|---|
弯曲工况最大应力/MPa | 347.36 | 326.70 | -5.95% |
扭转工况最大应力/MPa | 365.48 | 325.64 | -10.90% |
制动工况最大应力/MPa | 303.72 | 226.24 | -25.51% |
转弯工况最大应力/MPa | 335.91 | 325.81 | -3.01% |
弯曲工况最大变形/mm | 4.40 | 4.34 | - |
弯曲工况车架部分最大变形/mm | 4.40 | 4.34 | -1.36% |
扭转工况最大变形/mm | 11.80 | 16.31 | - |
扭转工况车架部分最大变形/mm | 11.80 | 11.38 | -3.56% |
制动工况最大变形/mm | 3.42 | 3.17 | - |
制动工况车架部分最大变形/mm | 3.42 | 3.17 | -7.31% |
转弯工况最大变形/mm | 5.86 | 8.09 | - |
转弯工况车架部分最大变形/mm | 5.86 | 8.09 | 38.05% |
1阶模态频率/Hz | 7.31 | 10.64 | 45.55% |
2阶模态频率/Hz | 12.63 | 12.24 | -3.09% |
3阶模态频率/Hz | 19.84 | 20.43 | 2.97% |
4阶模态频率/Hz | 20.38 | 23.14 | 13.54% |
5阶模态频率/Hz | 25.71 | 28.32 | 10.15% |
最危险点疲劳寿命(循环次数) | 2.82E+06 | 2.66E+06 | -5.67% |
最危险点疲劳寿命/万km | 107.79 | 101.67 | -5.68% |
车架质量/kg | 654.00 | 586.40 | -10.34% |
电池舱质量(不含动力电池)/kg | 339.27 | 266.92 | -21.33% |
车架与电池舱质量之和/kg | 993.27 | 853.32 | -14.09% |
1 | 国家统计局. 2023年12月份能源生产情况[EB/OL]. (2024-01-17)[2024-04-20]. https://www.stats.gov.cn/sj/zxfb/202401/t20240116_1946618.html. |
National Bureau of Statistics. Energy production situation in december 2023 [EB/OL] (2024-01-17) [2024-04-20] https://www.stats.gov.cn/sj/zxfb/202401/t20240116_1946618.html. | |
2 | 陈凌. 能源保障和安全是“国之大者”[N]. 人民日报,2023-07-14(005).DOI:10.28655/n.cnki.nrmrb.2023.007060. |
CHEN Ling. Energy security and security are the greatest priorities of a country[N]. People's Daily, July 14, 2023 (005) DOI: 10.28655/n.cnki.nrmrb.2023.007060. | |
3 | 李全,王俊升,王兵,等.纯电动汽车电池包轻量化设计综述[J].汽车工程学报,2022,12(4):431-445. |
LI Quan, WANG Junsheng, WANG Bing, et al. A review of lightweight design for pure electric vehicle battery packs [J]. Journal of Automotive Engineering, 2022, 12 (4): 431-445. | |
4 | WEI F, WALLS W D, ZHENG X, et al. Evaluating environmental benefits from driving electric vehicles: the case of Shanghai, China [J]. Transportation Research Part D: Transport and Environment, 2023, 119. |
5 | IRESHIKA M A S T, RHEINBERGER K, LLIUYACC-BLAS R, et al. Optimal power tracking for autonomous demand side management of electric vehicles [J]. Journal of Energy Storage, 2022, 52. |
6 | ALBATAYNEH A, JUAIDI A, JARADAT M, et al. Future of electric and hydrogen cars and trucks: an overview [J]. Energies, 2023, 16(7). |
7 | 王登峰,李慎华.基于试验设计与PSI决策相结合的白车身前端结构轻量化设计[J].汽车工程,2021,43(1):121-128,144. |
WANG Dengfeng, LI Shenhua. Lightweight design of front end structure of white body based on experimental design and PSI decision-making [J]. Automotive Engineering, 2021,43 (1): 121-128,144. | |
8 | 张凯成,李舜酩,孙明杰.钢铝材料结合的商用车车架多工况轻量化优化设计[J].中国机械工程,2020,31(18):2206-2211,2219. |
ZHANG Kaicheng, LI Shunmo, SUN Mingjie. Multi working condition lightweight optimization design of commercial vehicle frames made of steel and aluminum materials [J]. China Mechanical Engineering, 2020,31 (18): 2206-2211,2219. | |
9 | WANG D, ZHANG X. Application of the preference selection index method in multi-objective lightweight design of heavy commercial vehicle frames [J]. Engineering Optimization, 2022, 55(6): 1020-1039. |
[1] | Rong Cao,Junwei Hua,Yongcheng Li,Fangli Guo,Wenbin Hou. Intelligent Design and Analysis of Body Structure Based on Data Drive [J]. Automotive Engineering, 2024, 46(7): 1273-1281. |
[2] | Zhiling Fang,Yanli Song,Jie Kang,Xinghong Zhang,Dan Zhang. Lightweight Design and Optimization of Integrated Die Casting Aluminum Alloy Front Cabin [J]. Automotive Engineering, 2024, 46(7): 1314-1322. |
[3] | Chao Wang,Ming Li,Aiguo Cheng,Zhicheng He,Wanyuan Yu. Lightweight Design of Material-Structure for Steel-Aluminum Hybrid Cab [J]. Automotive Engineering, 2024, 46(4): 735-744. |
[4] | Cong Gao,Yingdan Zhu,Bofang Liu,Tiehu Li,Zhibai Wang,Gang Feng. Interfacial Optimization and Rapid Prototyping Process of Thermoplastic Carbon Fiber/Nylon 6 Composites for Automotive Lightweight [J]. Automotive Engineering, 2024, 46(3): 546-556. |
[5] | Libin Duan,Yu Zhang,Zhanpeng Du,Yegang Liu,Xiangxin Meng,Guannan Tian,Haiyang Zheng,Chuang Wu. Research on Lightweight Design of CTB Battery Pack Cover Assembly Based on VRB/OW-GFRP Hybrid Structure [J]. Automotive Engineering, 2024, 46(2): 290-299. |
[6] | Lin Zhang,Hua Meng,Yu Feng,Xiaolong Zhao,Chao Wei,Yunbing Yan. Optimization Design of Micro-texture on the Surface of Friction Plate in High-Speed Wet Clutch [J]. Automotive Engineering, 2024, 46(2): 320-328. |
[7] | Bo Liu,Yongxin Tang,Yi Wu,Ziyang Wang,Qin Yang,Tiegang Hu,Xiaomin Xu. Study on Lightweight Design of Integrated Mega-casting Aluminum Alloy Vehicle Body Components [J]. Automotive Engineering, 2024, 46(12): 2154-2163. |
[8] | Xiaoyan Li,Haiyan Yu,Zunkang Chu. Lightweight Bus Frame Based on Static Strength and Rollover Safety [J]. Automotive Engineering, 2024, 46(12): 2200-2208. |
[9] | Zhongyu Li,Zitong He,Jianfeng Wang,Bing Wang,Yiqun Liu,Junyuan Zhang. Impact Damage Assessment of CFRP Battery Box Based on Lamb Waves [J]. Automotive Engineering, 2024, 46(12): 2232-2240. |
[10] | Xianguang Gu, Honglin Chen, Luxin Yu, Daisheng Zhang. Integrated Design of Precision Aluminum Castings Parts and Its Application in Lightweight Vehicle Body [J]. Automotive Engineering, 2024, 46(1): 179-186. |
[11] | Lei Ma, Shunqing Yang, Huanhuan Wang, Jiachen Zhai, Jianao Xu. Lightweight Object Detection Algorithm Based on Image Saliency Feature Fusion [J]. Automotive Engineering, 2024, 46(1): 84-91. |
[12] | Lisheng Jin,Bingdong Ji,Baicang Guo. Driver’s Attention Prediction Based on Multi-Level Temporal-Spatial Fusion Network [J]. Automotive Engineering, 2023, 45(5): 759-767. |
[13] | Chunning Jin,Yan Gao,Shizhe Gao,Tianxia Zou,Yang Liu,Zhiheng Zhang. Lightweight Trailer Chassis Based on Roll Punching Integrated Longitudinal Beam [J]. Automotive Engineering, 2023, 45(5): 865-872. |
[14] | Yunkai Gao,Suo Zhang,Ze Yuan. Cab Topology Optimization Design Considering Fatigue Performance [J]. Automotive Engineering, 2023, 45(3): 468-476. |
[15] | Yizhe Chen,Hongde Fan,Yichun Wang,Hui Wang,Jun Li,Lin Hua. Research on Stamping Deformation of Automotive Fiber Metal Laminates [J]. Automotive Engineering, 2023, 45(3): 517-526. |