Automotive Engineering ›› 2025, Vol. 47 ›› Issue (4): 587-597.doi: 10.19562/j.chinasae.qcgc.2025.04.001
Bing Zhu,Rui Tang,Jian Zhao,Peixing Zhang(),Wenxu Li,Jiasheng Li,Xuefeng Xu
Received:
2024-06-07
Revised:
2024-07-22
Online:
2025-04-25
Published:
2025-04-18
Contact:
Peixing Zhang
E-mail:zhangpeixing@jlu.edu.cn
Bing Zhu,Rui Tang,Jian Zhao,Peixing Zhang,Wenxu Li,Jiasheng Li,Xuefeng Xu. Virtual Simulation Testing Method for Intelligent Vehicle Based on Large Language Model[J].Automotive Engineering, 2025, 47(4): 587-597.
1 | 崔明阳,黄荷叶,许庆,等.智能网联汽车架构、功能与应用关键技术[J].清华大学学报(自然科学版),2022,62(3):493-508. |
CUI Mingyang, HUANG Heye, XU Qing, et al. Survey of intelligent and connected vehicle technologies: architectures, functions and applications[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(3): 493-508. | |
2 | 朱冰,张培兴,赵健,等.基于场景的自动驾驶汽车虚拟测试研究进展[J].中国公路学报,2019,32(6):1-19. |
ZHU B, ZHANG P X, ZHAO J, et al. Review of scenario-based virtual validation methods for automated vehicles[J]. China Journal of Highway and Transport, 2019, 32(6): 1-19. | |
3 | ZHAO W X, ZHOU K, LI J, et al. A survey of large language models[J]. arXiv preprint arXiv:, 2023. |
4 | WEN L, FU D, LI X, et al. Dilu: a knowledge-driven approach to autonomous driving with large language models[J]. arXiv preprint arXiv:, 2023. |
5 | SHAO H, HU Y, WANG L, et al. Lmdrive: closed-loop end-to-end driving with large language models[J]. arXiv preprint arXiv:, 2023. |
6 | LIU X, JI K, FU Y, et al. P-tuning v2: prompt tuning can be comparable to fine-tuning universally across scales and tasks[J]. arxiv preprint arxiv:, 2021. |
7 | YANG J, JIN H, TANG R, et al. Harnessing the power of LLMs in practice: a survey on ChatGPT and beyond[J]. ACM Transactions on Knowledge Discovery from Data, 2024, 18(6): 1-32. |
8 | MENZEL T, BAGSCHIK G, MAURER M. Scenarios for development, test and validation of automated vehicles[C]. 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018: 1821-1827. |
9 | International Organization for Standardization. Road vehicles-test scenarios for automated driving systems-vocabulary:ISO 34501:2022 [S]. Geneva: ISO, 2022. |
10 | CORSO A, DU P, DRIGGS-CAMPBELL K, et al. Adaptive stress testing with reward augmentation for autonomous vehicle validatio[C]. 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019: 163-168. |
11 | 朱冰,汤瑞,赵健,等.基于代理遗传优化的智能驾驶系统加速测试方法[J].同济大学学报(自然科学版),2024,52(4):501-511. |
ZHU B, TANG R, ZHAO J, et al. Accelerated test method of intelligent driving system based on surrogate genetic optimization model [J]. Journal of Tongji University (Natural Science), 2024, 52(4): 501-511. | |
12 | ZHU B, ZHANG P, ZHAO J, et al. Hazardous scenario enhanced generation for automated vehicle testing based on optimization searching method[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 7321-7331. |
13 | 方培俊, 蔡英凤, 陈龙, 等. 基于车辆动力学混合模型的智能汽车轨迹跟踪控制方法[J]. 汽车工程, 2022, 44(10): 1469-1483. |
FAHG P J, CAI Y F, CHEN L, et al. Trajectory tracking control method for intelligent vehicles based on a hybrid vehicle dynamics model [J]. Automotive Engineering, 2022, 44(10): 1469-1483. | |
14 | ZHU B, SUN Y, ZHAO J, et al. Millimeter-wave radar in-the-loop testing for intelligent vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(8): 11126-11136. |
15 | 赵树廉, 来飞, 李克强, 等. 基于数字孪生技术的智能汽车测试方法研究[J]. 汽车工程, 2023, 45(1): 42-51. |
ZHAO S L, LAI F, LI K Q, et al. Research on intelligent vehicle test methods based on digital twin technology [J]. Automotive Engineering, 2023, 45 (1): 42-51. | |
16 | 陈君毅, 李如冰, 邢星宇, 等. 自动驾驶车辆智能性评价研究综述[J]. 同济大学学报 (自然科学版), 2019, 47(12): 1785-1790,1824. |
CHEN J Y, LI R B, XING X Y, et al. Survey on intelligence evaluation of autonomous vehicles[J]. Journal of Tongji University (Natural Science), 2019, 47(12): 1785-1790,1824. | |
17 | 朱冰,范天昕,张培兴,等.智能网联汽车标准化建设进程综述[J].汽车技术,2023(7):1-16. |
ZHU B, FAN T X, ZHANG P X, et al. Review of the standardization construction process of intelligent connected vehicles [J]. Automotive Technology, 2023 (7): 1-16. | |
18 | 胡大林, 何丰, 薛晓卿, 等. 自动驾驶车辆模拟仿真测试平台技术要求: T/CMAX 121—2019[S]. 北京: 中关村智通智能交通产业联盟, 2019. |
HU D L, HE F, XUE X Q, et al. Technical requirement for automatic driving vehicle simulation test platform in Beijing: T/CMAX 121—2019[S]. Beijing: CMAX, 2019. | |
19 | International Organization for Standardization. Road vehicles-test scenarios for automated driving systems-scenario based safety evaluation framework:ISO 34502:2022 [S]. Geneva: ISO, 2022. |
20 | 中国汽车工程学会. 智能网联汽车V2X系统预警应用功能测试与评价方法: T/CSAE 246—2022[S]. 北京: 中国汽车工程学会, 2022. |
China-SAE. Functional test and evaluation method of V2X system warning application of intelligent connected vehicle: T/CSAE 246—2022[S]. Beijing: China-SAE, 2022. | |
21 | 中国汽车工程学会. 《智能网联汽车激光雷达感知评测要求及方法》标准立项[EB/OL]. (2021-07-14)[2022-12-01]. http://www.caicv.org.cn/index.php/newsInfo?id=381. |
China-SAE. Technical requirement and testing method of intelligent connected vehicle lidar perception standard project establishment[EB/OL]. (2021-07-14)[2022-12-01]. http://www.caicv.org.cn/index.php/newsInfo?id=381. | |
22 | International Organization for Standardization. Road vehicles-functional safety:ISO26262:2018 [S]. Geneva: ISO, 2018. |
23 | International Organization for Standardization. Road vehicles-safety of the intended functionality:ISO21448:2018 [S]. Geneva: ISO, 2018. |
24 | DOSOVITSKIY A, ROS G, CODEVILLA F, et al. CARLA: An open urban driving simulator[C]. Conference on Robot Learning. PMLR, 2017: 1-16. |
25 | LUO H, TANG Z, PENG S, et al. ChatKBQA: a generate-then-retrieve framework for knowledge base question answering with fine-tuned large language models[J]. arXiv preprint arXiv:, 2023. |
26 | ZENG A, LIU X, DU Z, et al. GLM-130B: an open bilingual pre-trained model[J]. arXiv preprint arXiv:, 2022. |
27 | BAI J, BAI S, CHU Y, et al. Qwen technical report[J]. arXiv preprint arXiv:, 2023. |
28 | OUYANG L, WU J, JIANG X, et al. Training language models to follow instructions with human feedback[J]. Advances in Neural Information Processing Systems, 2022, 35: 27730-27744. |
[1] | Xianghao Meng,Ling Niu,Junqiang Xi,Danni Chen,Chao Lü. Risk Prediction of Heterogeneous Traffic Participants Based on Spatio-Temporal Graph Neural Networks [J]. Automotive Engineering, 2024, 46(9): 1537-1545. |
[2] | Xiujian Yang,Yongrui Bai. Trajectory Planning for Intelligent Vehicle in Dynamic Unstructured Environment Based on the Graph Search and Optimization Methods [J]. Automotive Engineering, 2024, 46(9): 1564-1575. |
[3] | Jing Zhao,Hao Liang,Tianxiao Xu,Yayue Xiao,Bowen Jiang. Research on Domain Specific Modeling Language for Intelligent Vehicle Cyber-Physical System [J]. Automotive Engineering, 2024, 46(8): 1370-1381. |
[4] | Jialiang Zhu,Qiaobin Liu,Fan Yang,Lu Yang,Weihua Li. Two-Dimensional Collision Risk Prediction for Intelligent Vehicles Considering the Influence of Heterogeneous Vehicle Types [J]. Automotive Engineering, 2024, 46(8): 1414-1421. |
[5] | Xiaolin Fan,Xudong Zhang,Yuan Zou,Xin Yin,Yingqun Liu. A Mapping and Planning Method Based on Simplified Visibility Graph [J]. Automotive Engineering, 2024, 46(7): 1249-1258. |
[6] | Shuen Zhao,Sheng Wang,Yao Leng. Multi-objective Explicit Model Predictive Control for Intelligent Vehicle Trajectory Tracking [J]. Automotive Engineering, 2024, 46(5): 784-794. |
[7] | Bing Zhu,Yinzi Huang,Jian Zhao,Peixing Zhang,Jingwei Xue. A Criticality Assessment Model for the Intelligent Vehicle Test Scenario Based on the Onboard Camera Images [J]. Automotive Engineering, 2024, 46(4): 557-563. |
[8] | Ting Chikit,Yafei Wang,Yichen Zhang,Mingyu Wu,Yile Wang. Energy-Saving Planning Method for Autonomous Driving Mining Trucks Based on Composite Dynamic Sampling [J]. Automotive Engineering, 2024, 46(4): 588-595. |
[9] | Wenxuan Shen,Rui Dai,Puyuan Tan,Qing Zhou. A Review of Reclined Occupant Crash Injuries and Impact Protection [J]. Automotive Engineering, 2024, 46(12): 2241-2256. |
[10] | Zhongjie Liu,Zhiguo Zhao,Qin Yu. Vehicle Assisted Driving Behavior Decision-Making Based on Dynamic Risk Assessment [J]. Automotive Engineering, 2024, 46(11): 2005-2016. |
[11] | Hongmao Qin,Shu Jiang,Tiantian Zhang,Heping Xie,Yougang Bian,Yang Li. Path Tracking Control of Intelligent Vehicle Based on Learning Model Predictive Control [J]. Automotive Engineering, 2024, 46(10): 1804-1815. |
[12] | Zhong Zhang,Xiaojian Wu,Huihua Jiang,Chao Zhang,Yukang Wan. Model Predictive Anti-disturbance Control for Longitudinal Motion of Intelligent Vehicles Under Multi-source Disturbances [J]. Automotive Engineering, 2024, 46(10): 1816-1828. |
[13] | Junhui Zhang,Xiaoman Guo,Yuxi Liu,Mingqiang Zheng,Yuhan Qian,Yuxuan Ding. Driver-Automation Shared Lane-Keeping Robust Control [J]. Automotive Engineering, 2024, 46(10): 1853-1862. |
[14] | Jianping Hao,Yanzhao Su,Zhihua Zhong,Jin Huang. Service-Oriented Architecture and Service Scheduling Mechanism for Intelligent Vehicles [J]. Automotive Engineering, 2023, 45(9): 1563-1572. |
[15] | Gaoshi Zhao,Long Chen,Yingfeng Cai,Yubo Lian,Hai Wang,Qingchao Liu,Chenglong Teng. Trajectory Prediction Technology Integrating Complex Network and Memory-Augmented Network [J]. Automotive Engineering, 2023, 45(9): 1608-1616. |
|