Automotive Engineering ›› 2025, Vol. 47 ›› Issue (10): 1895-1904.doi: 10.19562/j.chinasae.qcgc.2025.10.005
Huanhuan Wang1,Lisheng Jin1,2(
),Ye Zhang1,Xupeng Fu1
Received:2024-12-06
Revised:2025-04-26
Online:2025-10-25
Published:2025-10-20
Contact:
Lisheng Jin
E-mail:jinls@ysu.edu.cn
Huanhuan Wang,Lisheng Jin,Ye Zhang,Xupeng Fu. Vulnerable Road User Detection Method Based on Image Salient Feature Fusion[J].Automotive Engineering, 2025, 47(10): 1895-1904.
"
| 基线 | 显著特征融合 | EALAN | WIoU | Precision/%↑ | Precision/ %↑ | Recall/ %↑ | mAP/ %↑ | Params/ M↓ | FLOPS/ G↓ | FPS/ Hz↑ | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 行人 | 骑车人 | 两轮车 | ||||||||||
| YOLOv7 | 0.921 | 0.871 | 0.935 | 0.909 | 0.875 | 0.922 | 36.49 | 103.2 | 25.84 | |||
| √ | 0.937 | 0.952 | 0.933 | 0.941 | 0.848 | 0.921 | 37.23 | 105.3 | 23.81 | |||
| √ | 0.920 | 0.903 | 0.957 | 0.927 | 0.847 | 0.931 | 36.54 | 103.3 | 25.41 | |||
| √ | 0.941 | 0.852 | 0.887 | 0.893 | 0.855 | 0.923 | 36.49 | 103.2 | 25.87 | |||
| √ | √ | 0.938 | 0.919 | 0.955 | 0.937 | 0.860 | 0.918 | 37.27 | 105.4 | 23.47 | ||
| √ | √ | 0.927 | 0.918 | 0.955 | 0.933 | 0.862 | 0.933 | 37.23 | 105.3 | 23.55 | ||
| √ | √ | 0.921 | 0.938 | 0.968 | 0.942 | 0.868 | 0.936 | 36.54 | 103.3 | 25.32 | ||
| √ | √ | √ | 0.968 | 0.898 | 0.971 | 0.946 | 0.879 | 0.943 | 37.27 | 105.4 | 23.25 | |
"
| 方法 | Precision/%↑ | Precision/%↑ | Recall/%↑ | mAP/%↑ | FPS/Hz↑ | ||
|---|---|---|---|---|---|---|---|
| 行人 | 骑车人 | 两轮车 | |||||
| Faster R-CNN (ResNet50+FPN)[ | 0.824 | 0.851 | 0.897 | 0.857 | 0.816 | 0.887 | 11.96 |
| YOLOv5[ | 0.926 | 0.918 | 0.954 | 0.932 | 0.866 | 0.942 | 23.27 |
| YOLOX-s[ | 0.934 | 0.902 | 0.897 | 0.911 | 0.907 | 0.913 | 19.51 |
| YOLOR-p6[ | 0.922 | 0.915 | 0.953 | 0.93 | 0.897 | 0.921 | 17.83 |
| YOLOv7[ | 0.921 | 0.871 | 0.935 | 0.909 | 0.875 | 0.922 | 25.84 |
| YOLOv8[ | 0.925 | 0.899 | 0.941 | 0.921 | 0.891 | 0.932 | 32.13 |
| YOLOv11[ | 0.920 | 0.798 | 0.967 | 0.895 | 0.885 | 0.920 | 39.42 |
| YOLOv7+SE[ | 0.922 | 0.875 | 0.938 | 0.912 | 0.871 | 0.924 | 23.10 |
| YOLOv7+CA[ | 0.924 | 0.871 | 0.929 | 0.908 | 0.882 | 0.919 | 22.91 |
| YOLOv7+ESCA[ | 0.933 | 0.880 | 0.951 | 0.921 | 0.893 | 0.930 | 21.42 |
| 本文方法 | 0.968 | 0.898 | 0.971 | 0.946 | 0.879 | 0.943 | 23.25 |
"
| 方法 | Precision/%↑ | Precision/ %↑ | mAP/ %↑ | FPS/ Hz↑ | |
|---|---|---|---|---|---|
| 行人 | 骑车人 | ||||
| Faster R-CNN[ | 0.782 | 0.818 | 0.797 | 0.802 | 13.48 |
| YOLOv5[ | 0.901 | 0.911 | 0.906 | 0.914 | 25.17 |
| YOLOX-s[ | 0.910 | 0.903 | 0.907 | 0.901 | 22.64 |
| YOLOR-p6[ | 0.891 | 0.919 | 0.905 | 0.918 | 20.44 |
| YOLOv7[ | 0.925 | 0.907 | 0.916 | 0.919 | 27.49 |
| YOLOv8[ | 0.931 | 0.920 | 0.925 | 0.933 | 33.76 |
| YOLOv11[ | 0.902 | 0.907 | 0.905 | 0.906 | 40.27 |
| YOLOv7+SE | 0.927 | 0.914 | 0.921 | 0.923 | 24.86 |
| YOLOv7+CA | 0.916 | 0.905 | 0.911 | 0.916 | 23.81 |
| YOLOv7+ESCA | 0.929 | 0.923 | 0.926 | 0.930 | 24.66 |
| 本文方法 | 0.932 | 0.954 | 0.943 | 0.949 | 24.68 |
| [1] | OLSZEWSKI P, SZAGALA P, RABCZENKO D, et al. Investigating safety of vulnerable road users in selected EU countries[J]. Journal of Safety Research, 2019, 68: 49-57. |
| [2] | World Health Organization. Global status report on road safety 2023[R]. World Health Organization, 2023. |
| [3] | LI G, YANG Y, QU X. Deep learning approaches on pedestrian detection in hazy weather[J]. IEEE Transactions on Industrial Electronics, 2019, 67(10): 8889-8899. |
| [4] | 肖振久,李思琦,曲海成.基于多尺度特征与互监督的拥挤行人检测[J].计算机工程与科学,2024,46(7):1278-1285. |
| XIAO Z J, LI S Q, QU H C. Pedestrian detection based on multi-scale features and mutual supervision[J]. Computer Engineering & Science, 2024,46(7):1278-1285. | |
| [5] | SROCZYNSKI A, KUROWSKI A, ZAPOROWSKI S, et al. Examining impact of speed recommendation algorithm operating in autonomous road signs on minimum distance between vehicles[J]. Remote Sensing, 2022, 14(12): 2803. |
| [6] | ZHANG S, YANG X, LIU Y, et al. Asymmetric multi-stage CNNs for small-scale pedestrian detection[J]. Neurocomputing, 2020, 409: 12-26. |
| [7] | 马超凡,李翔,王晓霞,等.基于重参数化的轻量化非机动车目标检测[J/OL].计算机工程与应用,1-10[2024-10-08].http://kns.cnki.net/kcms/detail/11.2127.tp.20240522.1323.006.html. |
| MA C F, LI X, WANG X X, et al. Lightweight non-motor vehicle target detection based on re-parameterization [J/OL]. Computer Engineering and Applications,[2024-10-08].http://kns.cnki.net/kcms/detail/11.2127.tp.20240522.1323.006.html. | |
| [8] | LIN C, LU J, ZHOU J. Multi-grained deep feature learning for robust pedestrian detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(12): 3608-3621. |
| [9] | 高广鹏,赵峰.基于并行局部特征金字塔的弱势道路使用者检测[J].计算机应用与软件,2022,39(1):151-157,249. |
| GAO G P, ZHAO F. Vulnerable road users detection based on parallel local features pyramid network[J]. Computer Applications and Software, 2022, 39(1):151-157,249. | |
| [10] | FENG D, HAASE-SCHUTZ C, ROSENBAUM L, et al. Deep multi-modal object detection and semantic segmentation for autonomous driving: datasets, methods, and challenges[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(3): 1341-1360. |
| [11] | FENG X, HAN J, YAO X, et al. TCANet: triple context-aware network for weakly supervised object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(8): 6946-6955. |
| [12] | LI Y, YU A W, MENG T, et al. Deepfusion: lidar-camera deep fusion for multi-modal 3D object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022: 17182-17191. |
| [13] | PAL S K, PRAMANIK A, MAITI J, et al. Deep learning in multi-object detection and tracking: state of the art[J]. Applied Intelligence, 2021, 51: 6400-6429. |
| [14] | DAI X, HU J, ZHANG H, et al. Multi-task faster R-CNN for nighttime pedestrian detection and distance estimation[J]. Infrared Physics & Technology, 2021, 115: 103694. |
| [15] | BRAZIL G, YIN X, LIU X. Illuminating pedestrians via simultaneous detection & segmentation[C]. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017: 4950-4959. |
| [16] | MAO J, XIAO T, JIANG Y, et al. What can help pedestrian detection?[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 3127-3136. |
| [17] | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021: 13713-13722. |
| [18] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 7132-7141. |
| [19] | LIU H, ZHANG Y, CHEN Y. A symmetric efficient spatial and channel attention (ESCA) module based on convolutional neural networks[J]. Symmetry, 2024, 16(8): 952. |
| [20] | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229. |
| [21] | ZHANG S, CHEN D, YANG J, et al. Guided attention in cnns for occluded pedestrian detection and re-identification[J]. International Journal of Computer Vision, 2021, 129: 1875-1892. |
| [22] | ASSEFA A A, TIAN W, ACHEAMPONG K N, et al. Small‐scale and occluded pedestrian detection using multi mapping feature extraction function and modified soft‐nms[J]. Computational Intelligence and Neuroscience, 2022, 2022(1): 9325803. |
| [23] | MA J, WAN H, WANG J, et al. An improved one-stage pedestrian detection method based on multi-scale attention feature extraction[J]. Journal of Real-Time Image Processing, 2021: 1-14. |
| [24] | WANG M, CHEN H, LI Y, et al. Multi‐scale pedestrian detection based on self‐attention and adaptively spatial feature fusion[J]. IET Intelligent Transport Systems, 2021, 15(6): 837-849. |
| [25] | YESHURUN Y. The spatial distribution of attention[J]. Current Opinion in Psychology, 2019, 29: 76-81. |
| [26] | WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]. Proceedings of the European Conference on Computer Vision, 2018: 3-19. |
| [27] | YANG G, WANG Z, ZHUANG S, et al. PFF‐CB: multiscale occlusion pedestrian detection method based on PFF and CBAM[J]. Computational Intelligence and Neuroscience, 2022, 2022(1): 3798060. |
| [28] | LIU M, WAN L, WANG B, et al. SE-YOLOv4: shuffle expansion YOLOv4 for pedestrian detection based on PixelShuffle[J]. Applied Intelligence, 2023, 53(15): 18171-18188. |
| [29] | OUNOUGHI C, YAHIA S B. Data fusion for ITS: a systematic literature review[J]. Information Fusion, 2023, 89: 267-291. |
| [30] | SHAKERI A, MOSHIRI B, GRAKANI H G. Pedestrian detection using image fusion and stereo vision in autonomous vehicles[C]. 2018 9th International Symposium on Telecommunications (IST). IEEE, 2018: 592-596. |
| [31] | WEI W, CHENG L, XIA Y, et al. Occluded pedestrian detection based on depth vision significance in biomimetic binocular[J]. IEEE Sensors Journal, 2019, 19(23): 11469-11474. |
| [32] | ZHAO Y, ZHAO M, SHI F, et al. Light-field imaging for distinguishing fake pedestrians using convolutional neural networks[J]. International Journal of Advanced Robotic Systems, 2021, 18(1): 1729881420987400. |
| [33] | SHABESTARI Z B, HOSSEININAVEH A, REMONDINOI F. Motorcycle detection and collision warning using monocular images from a vehicle[J]. Remote Sensing, 2023, 15(23): 5548. |
| [34] | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 7464-7475. |
| [35] | CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986 (6): 679-698. |
| [36] | HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973 (6): 610-621. |
| [37] | LI J, TANG J, LIU H. Reconstruction-based unsupervised feature selection: an embedded approach[C]. IJCAI, 2017: 2159-2165. |
| [38] | ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586. |
| [39] | TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv preprint arXiv:, 2023. |
| [40] | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149. |
| [41] | ZHAN W, SUN C, WANG M, et al. An improved Yolov5 real-time detection method for small objects captured by UAV[J]. Soft Computing, 2022, 26: 361-373. |
| [42] | GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv preprint arXiv:, 2021. |
| [43] | WANG C Y, YEH I H, LIAO H Y M. You only learn one representation: unified network for multiple tasks[J]. arXiv preprint arXiv:, 2021. |
| [44] | VARGHESE R, SAMBATH M. Yolov8: a novel object detection algorithm with enhanced performance and robustness [C]. 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), 2024. |
| [45] | KHANAM R, HUSSAIN M. Yolov11: an overview of the key architectural enhancements[J].arXiv preprint arXiv: , 2024. |
| [1] | Huizhi Xu,Jianzhao Zhang,Xiancai Jiang,Chengju Song. Driver Behavior Recognition Method via MobileViT Model and Optical Flow Fusion [J]. Automotive Engineering, 2025, 47(8): 1479-1489. |
| [2] | Aiqi Long,Zhiguo Feng,Zhenbo Zhang,Xingqiang Tian,Wei Xiang. Vehicle Target Detection Algorithm Based on Lightweight RT-DETR-tiny [J]. Automotive Engineering, 2025, 47(6): 1188-1197. |
| [3] | Xi Zhang,Ying Yang,Chaojun Chen,Chunfeng Wang,Lei Yang. Enhanced Two-Stream Transformer Model for Remaining Useful Life Prediction of Diesel Engines [J]. Automotive Engineering, 2025, 47(2): 292-300. |
| [4] | Yunhong Deng,Zhiguo Zhao,Yifei Yang,Qin Yu. Vision and Radars Fusion Algorithm Based on Distributed Robust Kalman Filters in ADAS [J]. Automotive Engineering, 2024, 46(5): 805-815. |
| [5] | Teng Cheng,Hao Ni,Qiang Zhang,Wenchong Wang,Qin Shi. Two-Stage Multimodal Fusion Networks Based on Virtual Point Clouds [J]. Automotive Engineering, 2024, 46(2): 222-229. |
| [6] | Liang Liu,Ying Zhang,Chenyang Shi,Xinhua Zhao,Xianming Meng,Zengchang Liu. Research on Detection Method of Failure Defects of Rivet on Riveted Aluminum Alloy Plates [J]. Automotive Engineering, 2024, 46(2): 366-374. |
| [7] | Mingfang Zhang,Ying Liu,Jian Ma,Ye He,Li Wang. Collaborative Perception Based on Point Cloud Spatio-Temporal Feature Compensation Network for Intelligent Connected Vehicles [J]. Automotive Engineering, 2024, 46(12): 2279-2289. |
| [8] | Qin Zhu,Shenyang Han,Mingru Zeng,Pinghong Lai,Chuimao Wu,Weiyi Hu. SFW-YOLOv8 Complex Scene Video Vehicle Detection Model [J]. Automotive Engineering, 2024, 46(12): 2290-2302. |
| [9] | Lei Ma, Shunqing Yang, Huanhuan Wang, Jiachen Zhai, Jianao Xu. Lightweight Object Detection Algorithm Based on Image Saliency Feature Fusion [J]. Automotive Engineering, 2024, 46(1): 84-91. |
| [10] | Yong Han,Xujie Lin,Hongwu Huang,Hongyu Cai,Jinrong Luo,Yangting Li. An Approach for Predicting Pedestrian Trajectories in Typical Car Crash Scenarios [J]. Automotive Engineering, 2023, 45(6): 1022-1030. |
| [11] | Long Chen,Chen Yang,Yingfeng Cai,Hai Wang,Yicheng Li. Pedestrian Crossing Intention Prediction Method Based on Multimodal Feature Fusion [J]. Automotive Engineering, 2023, 45(10): 1779-1790. |
| [12] | Lisheng Jin,Yang He,Huanhuan Wang,Zhen Huo,Xianyi Xie,Baicang Guo. Point Cloud Segmentation Algorithm Based on Adaptive Threshold DBSCAN for Roadside LiDAR [J]. Automotive Engineering, 2022, 44(7): 987-996. |
| [13] | Bingli Zhang,Haoran Qin,Shang Jiang,Jieyu Zheng,Zhenghai Wu. A Method of Vehicle Detection at Night Based on RetinaNet and Optimized Loss Functions [J]. Automotive Engineering, 2021, 43(8): 1195-1202. |
| [14] | Teng Cheng,Lei Sun,Dengchao Hou,Qin Shi,Junning Zhang,Jiong Chen,He Huang. Multi-level and Multi-modal Target Detection Based on Feature Fusion [J]. Automotive Engineering, 2021, 43(11): 1602-1610. |
| [15] | Hu Shuaishuai, Lü Xiaojiang, Zhang Xiaotian, Zhang Haiyang, Hong Dan, Zhou Dayong. Design and Verification of Pedestrian Protection Airbag [J]. Automotive Engineering, 2020, 42(5): 608-614. |
|
||