| [1] |
李光伟, 韩雪, 邢丹敏, 等. 催化层/微孔层界面设计对PEMFC影响研究[J]. 汽车工程, 2025, 47(1): 77-84.
|
|
LI G W, HAN X, XING D M, et al. Research on effect of catalyst layer/microporous layer interface design on the PEMFC[J]. Automotive Engineering, 2025, 47(1): 77-84.
|
| [2] |
李奇, 刘嘉蔚, 陈维荣. 质子交换膜燃料电池剩余使用寿命预测方法综述及展望[J]. 中国电机工程学报, 2019, 39(8): 2365-2375.
|
|
LI Q, LIU J W, CHEN W R. Review and prospect of remaining useful life prediction methods for proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2019, 39(8): 2365-2375.
|
| [3] |
YANG Y, YU X, ZHU W, et al. Degradation prediction of proton exchange membrane fuel cells with model uncertainty quantification[J]. Renewable Energy, 2023, 219(Part2): 17.
|
| [4] |
AO Y, LAGHROUCHE S, DEPERNET D, et al. Proton exchange membrane fuel cell prognosis based on frequency-domain Kalman filter[J]. IEEE Transactions on Transportation Electrification, 2021(7-4).
|
| [5] |
PEI P, MENG Y, CHEN D, et al. Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law[J]. Energy, 2023, 265: 126341.
|
| [6] |
XIE R, LI C, MA R, et al. An explainable data-driven framework for fuel cell aging prediction under dynamic condition[J]. IEEE Transactions on Industrial Electronics, 2022, 70(6): 5960-5970.
|
| [7] |
DENG Z, CHAN S H, CHEN Q, et al. Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system[J]. Applied Energy, 2023, 331: 120385.
|
| [8] |
YANG J, WANG L, ZHANG B, et al. Remaining useful life prediction of vehicle-oriented PEMFC systems based on IGWO-BP neural network under real-world traffic conditions[J]. Energy, 2024, 291: 130334.
|
| [9] |
华志广, 潘诗媛, 赵冬冬, 等. 基于分解优化并行ESN的氢燃料电池寿命预测[J]. 航空学报, 2025, 46(2): 297-311.
|
|
HUA Z G, PAN S Y, ZHAO D D, et al. Lifespan prediction of hydrogen fuel cell based on decomposition optimization parallel ESN[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 297-311.
|
| [10] |
YUE M, ZHANG X, TENG T, et al. Recursive performance prediction of automotive fuel cell based on conditional time series forecasting with convolutional neural network[J]. International Journal of Hydrogen Energy, 2024, 56: 248-258.
|
| [11] |
赵波, 张领先, 章雷其, 等. PEMFC剩余使用寿命直接预测的混合方法[J]. 中国电机工程学报, 2024, 44(21): 8554-8568.
|
|
ZHAO B, ZHANG L X, ZHANG L Q, et al. A hybrid method for direct prediction of PEMFC remaining useful life[J]. Proceedings of the CSEE, 2024, 44(21): 8554-8568.
|
| [12] |
CHEN L, YANG J, WU X, et al. Remaining useful life prediction of PEMFCs based on mode decomposition and hybrid method under real-world traffic conditions[J]. Energy, 2025, 314.
|
| [13] |
MA R, XIE R, XU L, et al. A hybrid prognostic method for PEMFC with aging parameter prediction[J]. IEEE Transactions on Transportation Electrification, 2021(7-4).
|
| [14] |
FCLAB Research. IEEE PHM 2014 data challenge[EB/OL]. 2014. http: //eng.fclab.fr/ieee-phm-2014-data-challenge/.
|
| [15] |
刘嘉蔚, 李奇, 陈维荣, 等. 基于核超限学习机和局部加权回归散点平滑法的PEMFC剩余使用寿命预测方法[J]. 中国电机工程学报, 2019, 39(24): 7272-7279,7500.
|
|
LIU J W, LI Q, CHEN W R, et al. Remaining useful life prediction method of PEMFC based on kernel extreme learning machine and locally weighted scatterplot smoothing[J]. Proceedings of the CSEE, 2019, 39(24): 7272-7279,7500.
|