Automotive Engineering ›› 2022, Vol. 44 ›› Issue (11): 1656-1664.doi: 10.19562/j.chinasae.qcgc.2022.11.004
Special Issue: 智能网联汽车技术专题-感知&HMI&测评2022年
Previous Articles Next Articles
Dafang Wang1,Hai Shang1,Jiang Cao1(),Tao Wang2(
),Xiangteng Xia1,Yulin Han1
Received:
2022-05-08
Revised:
2022-06-17
Online:
2022-11-25
Published:
2022-11-19
Contact:
Jiang Cao,Tao Wang
E-mail:1964611621@qq.com;3387340132@qq.com
Dafang Wang,Hai Shang,Jiang Cao,Tao Wang,Xiangteng Xia,Yulin Han. Semantic Segmentation Method of Point Cloud in Automatic Driving Scene Based on Self-attention Mechanism[J].Automotive Engineering, 2022, 44(11): 1656-1664.
"
算法 | MIoU/% | 道路 | 人行道 | 停车场 | 其他地面 | 建筑物 | 汽车 | 货车 | 自行车 | 摩托车 |
---|---|---|---|---|---|---|---|---|---|---|
PointNet++ | 20.1 | 72.0 | 41.8 | 18.7 | 5.6 | 62.3 | 53.7 | 0.9 | 1.9 | 0.2 |
SqueezeSegV2 | 39.7 | 88.6 | 67.6 | 45.8 | 17.7 | 73.7 | 81.8 | 13.4 | 18.5 | 17.9 |
RangeNet++ | 52.2 | 91.8 | 75.2 | 65.0 | 27.8 | 87.4 | 91.4 | 25.7 | 25.7 | 34.4 |
KPConv | 58.8 | 90.3 | 72.7 | 61.3 | 31.5 | 90.5 | 95.0 | 33.4 | 30.2 | 42.5 |
FusionNet[ | 61.3 | 91.8 | 77.1 | 68.8 | 30.8 | 92.5 | 95.3 | 41.8 | 47.5 | 37.7 |
RandLA-Net | 53.9 | 90.7 | 73.7 | 60.3 | 20.4 | 86.9 | 94.2 | 40.1 | 26.0 | 25.8 |
本文 | 59.6 | 91.1 | 74.5 | 62.2 | 28.5 | 90.6 | 96.9 | 43.5 | 32.3 | 33.8 |
算法 | 其他车辆 | 植被 | 树干 | 地形 | 行人 | 自行车手 | 摩托车手 | 栅栏 | 电线杆 | 交通标志 |
PointNet++ | 0.2 | 46.5 | 13.8 | 30.0 | 0.9 | 1.0 | 0.0 | 16.9 | 6.0 | 8.9 |
SqueezeSegV2 | 14.0 | 71.8 | 35.8 | 60.2 | 20.1 | 25.1 | 3.9 | 41.1 | 20.2 | 36.3 |
RangeNet++ | 23.0 | 80.5 | 55.1 | 64.6 | 38.3 | 38.8 | 4.8 | 58.6 | 47.9 | 55.9 |
KPConv | 44.3 | 84.8 | 69.2 | 69.1 | 61.5 | 61.6 | 11.8 | 64.2 | 56.4 | 47.4 |
FusionNet | 34.5 | 84.5 | 69.8 | 68.5 | 59.5 | 56.8 | 11.9 | 69.4 | 60.4 | 66.5 |
RandLA-Net | 38.9 | 81.4 | 61.3 | 66.8 | 49.2 | 48.2 | 7.2 | 56.3 | 49.2 | 47.7 |
本文 | 43.2 | 83.9 | 65.4 | 68.7 | 64.8 | 58.8 | 12.5 | 67.3 | 57.6 | 57.3 |
1 | 姜枫,顾庆,郝慧珍,等.基于内容的图像分割方法综述[J].软件学报,2017,28(1):160-183.DOI:10.13328/j.cnki.jos.005136. |
JIANG F, GU Q, HAO H Z, et al. Survey on content-based image segmentation methods[J]. Journal of Software, 2017, 28(1): 160-183. | |
2 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]. Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, 2015: 3431-3440. |
3 | GUO Y, WANG H, HU Q, et al. Deep learning for 3D point clouds: a survey[J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2020, 43(12): 4338-4364. |
4 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015: 234-241. |
5 | HE K, GKIOXARI G, DOLLÁR P, et al. Mask r-cnn[C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969. |
6 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. |
7 | SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 945-953. |
8 | WU B, WAN A, YUE X, et al. Squeezeseg: convolutional neural nets with recurrent crf for real-time road-object segmentation from 3D lidar point cloud[C].2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 1887-1893. |
9 | IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:, 2016. |
10 | WU B, ZHOU X, ZHAO S, et al. Squeezesegv2: improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud[C].2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 4376-4382. |
11 | XU C, WU B, WANG Z, et al. Squeezesegv3: spatially-adaptive convolution for efficient point-cloud segmentation[C].European Conference on Computer Vision. Springer, Cham, 2020: 1-19. |
12 | MILIOTO A, VIZZO I, BEHLEY J, et al. Rangenet++: fast and accurate lidar semantic segmentation[C].2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 4213-4220. |
13 | ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C].International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2016: 424-432. |
14 | TCHAPMI L, CHOY C, ARMENI I, et al. Segcloud: semantic segmentation of 3D point clouds[C].2017 International Conference on 3D Vision (3DV). IEEE, 2017: 537-547. |
15 | MENG H Y, GAO L, LAI Y K, et al. VV-net: voxel vae net with group convolutions for point cloud segmentation[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 8500-8508. |
16 | ZHOU H, ZHU X, SONG X, et al. Cylinder3D: an effective 3D framework for driving-scene lidar semantic segmentation[J]. arXiv preprint arXiv:, 2020. |
17 | WANG F, ZHUANG Y, GU H, et al. Octreenet: a novel sparse 3-D convolutional neural network for real-time 3-D outdoor scene analysis[J]. IEEE Transactions on Automation Science and Engineering, 2019, 17(2): 735-747. |
18 | QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C].Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, 2017: 652-660. |
19 | QI C R, YI L, SU H, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space[J]. Advances in Neural Information Processing Systems, 2017, 30. |
20 | JIANG M, WU Y, ZHAO T, et al. Pointsift: a sift-like network module for 3D point cloud semantic segmentation[J]. arXiv preprint arXiv:, 2018. |
21 | LI Y, BU R, SUN M, et al. Pointcnn: convolution on X-transformed points[J]. Advances in Neural Information Processing Systems, 2018, 31. |
22 | THOMAS H, QI C R, DESCHAUD J E, et al. Kpconv: flexible and deformable convolution for point clouds[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6411-6420. |
23 | LIU Z, TANG H, LIN Y, et al. Point-voxel cnn for efficient 3D deep learning[J]. Advances in Neural Information Processing Systems, 2019, 32. |
24 | XU J, ZHANG R, DOU J, et al. Rpvnet: a deep and efficient range-point-voxel fusion network for lidar point cloud segmentation[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 16024-16033. |
25 | HU Q, YANG B, XIE L, et al. Randla-net: efficient semantic segmentation of large-scale point clouds[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11108-11117. |
26 | ZHAO H, JIANG L, JIA J, et al. Point transformer[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 16259-16268. |
27 | BEHLEY J, GARBADE M, MILIOTO A, et al. Semantickitti: a dataset for semantic scene understanding of lidar sequences[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9297-9307. |
28 | PAN Y, GAO B, MEI J, et al. Semanticposs: a point cloud dataset with large quantity of dynamic instances[C].2020 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2020: 687-693. |
29 | GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. |
30 | ZHANG F, FANG J, WAH B, et al. Deep fusionnet for point cloud semantic segmentation[C].European Conference on Computer Vision. Springer, Cham, 2020: 644-663. |
[1] | Zuliang Jin,Hanbing Wei,Liu Zheng,Lu Lou,Guofeng Zheng. Lightweight Semantic Segmentation Method Based on Local Window Cross Attention [J]. Automotive Engineering, 2023, 45(9): 1617-1625. |
[2] | Wenguang Wu,Shuangyue Tian,Zhiyong Zhang,Bin Zhang. Research on Semantic Segmentation of Uneven Features of Unpaved Road [J]. Automotive Engineering, 2023, 45(8): 1468-1478. |
[3] | Lei Zhang, Keren Guan, Xiaolin Ding, Pengyu Guo, Zhenpo Wang, Fengchun Sun. Tire-Road Friction Estimation Method Based on Image Recognition and Dynamics Fusion [J]. Automotive Engineering, 2023, 45(7): 1222-1234. |
[4] | Runhui Huang,Likun Hu,Mingfang Su,Daye Xu,Aoran Chen. Semantic Segmentation Method of LiDAR Point Cloud Based on 3D Conical Grid [J]. Automotive Engineering, 2022, 44(8): 1173-1182. |
[5] | Dafang Wang,Lei Liu,Jiang Cao,Gang Zhao,Wenshuo Zhao,Wei Tang. Semantic Segmentation Method of Autonomous Driving Images Based on Atrous Spatial Pyramid Pooling [J]. Automotive Engineering, 2022, 44(12): 1818-1824. |
[6] | Shengjie Huang,Manjiang Hu,Yunshui Zhou,Zhouping Yin,Xiaohui Qin,Yougang Bian,Qianqian Jia. Vehicle Visual SLAM in Dynamic Scenes Based on Semantic Segmentation and Motion Consistency Constraints [J]. Automotive Engineering, 2022, 44(10): 1503-1510. |
[7] | Xiangteng Xia,Dafang Wang,Jiang Cao,Gang Zhao,Jingming Zhang. Semantic Segmentation Method of On-board Lidar Point Cloud Based on Sparse Convolutional Neural Network [J]. Automotive Engineering, 2022, 44(1): 26-35. |
[8] | Hai Wang,Baixiang Cai,Yingfeng Cai,Ze Liu,Kai Sun,Long Chen. Detection of Water⁃covered and Wet Areas on Road Pavement Based on Semantic Segmentation Network [J]. Automotive Engineering, 2021, 43(4): 485-491. |