Automotive Engineering ›› 2023, Vol. 45 ›› Issue (8): 1383-1391.doi: 10.19562/j.chinasae.qcgc.2023.08.009
Special Issue: 智能网联汽车技术专题-感知&HMI&测评2023年
Previous Articles Next Articles
Bing Zhu,Hongyi Jiang,Jian Zhao(),Jiayi Han,Yanchen Liu
Received:
2023-02-22
Revised:
2023-04-06
Online:
2023-08-25
Published:
2023-08-17
Contact:
Jian Zhao
E-mail:zhaojian@jlu.edu.cn
Bing Zhu,Hongyi Jiang,Jian Zhao,Jiayi Han,Yanchen Liu. A Method for Dynamically Calculating and Evaluating the Trustworthiness of Collaborative Perception of Intelligent Connected Vehicles[J].Automotive Engineering, 2023, 45(8): 1383-1391.
"
算法1:检测有效性判别 |
---|
输入: 协同车辆集合 车辆检测对象集合 集合 输出:车辆检测评价有效性集合 //车辆vi对集合中车辆vj的检测对象有效性进行识别 1. for 2. for 3. 4. while 5. if 6. 7. else 8. 9. end while 10. 11. end for 12. 13. end for 14. //通过不同车辆视角下的检测状态,累计判定 15. 16. for 17. 18. 19. end for 20. for 21. if 22. 23. else 24. 25. 26. end for |
1 | REN S, CHEN S, ZHANG W. Collaborative perception for autonomous driving: current status and future trend[C]. Proceedings of 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control. Singapore: Springer Nature Singapore, 2023: 682-692. |
2 | GODOY J, JIMÉNEZ V, ARTUÑEDO A, et al. A grid-based framework for collective perception in autonomous vehicles[J]. Sensors, 2021, 21(3): 744. |
3 | YAO X, ZHANG X, NING H, et al. Using trust model to ensure reliable data acquisition in VANETs[J]. Ad Hoc Networks, 2017, 55: 107-118. |
4 | DWIVEDI S, DUBEY R. Review in trust and vehicle scenario in VANET[J]. International Journal of Future Generation Communication and Networking, 2016, 9(5): 305-314. |
5 | KIM S W, QIN B, CHONG Z J, et al. Multivehicle cooperative driving using cooperative perception: design and experimental validation[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 663-680. |
6 | XIAO Z, MO Z, JIANG K, et al. Multimedia fusion at semantic level in vehicle cooperactive perception[C]. 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). San Diego, CA: IEEE, 2018: 1-6. |
7 | ARNOLD E, DIANATI M, DE TEMPLE R, et al. Cooperative perception for 3D object detection in driving scenarios using infrastructure sensors[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1852-1864. |
8 | MILLER A, RIM K, CHOPRA P, et al. Cooperative perception and localization for cooperative driving[C]. 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris, France: IEEE, 2020: 1256-1262. |
9 | WANG D, MULLER T, LIU Y, et al. Towards robust and effective trust management for security: a survey[C]. 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications. Beijing, China: IEEE, 2014: 511-518. |
10 | 张劲松. 车联网信任管理机制的研究和实现[D]. 北京: 北京邮电大学, 2020. |
ZHANG J. Research and implementation of trust management mechanism in V2V communications[D]. Beijing: Beijing University of Posts and Telecommunications, 2020. | |
11 | 樊娜, 段宗涛, 王青龙, 等. 面向车联网环境的车辆行为可信决策机制[J]. 计算机工程与设计, 2018, 39(1): 33-37,43. |
FAN N, DUAN Z T, WANG Q L, et al. Vehicle behaviour trusted decision-making mechanism for V2X environment[J]. Computer Engineering and Design, 2018,39(1), 33-37,43. | |
12 | ROSENSTATTER T, ENGLUND C. Modelling the level of trust in a cooperative automated vehicle control system[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(4): 1237-1247. |
13 | LIU Z, WENG J, MA J, et al. TCEMD: a trust cascading-based emergency message dissemination model in VANETs[J]. IEEE Internet of Things Journal, 2020, 7(5): 4028-4048. |
14 | ALNASSER A, SUN H, JIANG J. Recommendation-based trust model for vehicle-to-everything (V2X)[J]. IEEE Internet of Things Journal, 2020, 7(1): 440-450. |
15 | CHEN C, ZHANG J, COHEN R, et al. A trust modeling framework for message propagation and evaluation in VANETs[C]. 2010 2nd International Conference on Information Technology Convergence and Services. Cebu, Philippines: IEEE, 2010: 1-8. |
16 | ALLIG C, WANIELIK G. Alignment of perception information for cooperative perception[C]. 2019 IEEE Intelligent Vehicles Symposium (IV). Paris, France: IEEE, 2019: 1849-1854. |
17 | 张连超, 乔瑞萍, 党祺玮, 等. 具有全局特征的空间注意力机制[J]. 西安交通大学学报, 2020, 54(11): 129-138. |
ZHANG L C, QIAO R P, DANG Q W, et al. A spatial attention mechanism with global features[J]. Journal of Xi'an Jiaotong University, 2020,54(11): 129-138. | |
18 | 吕灵智. 基于毫米波雷达与摄像机信息融合的前方车辆检测[D]. 重庆: 重庆大学, 2020. |
LV L Z. Forward vehicle detection based on millimeter wave radar and camera information fusion[D]. Chongqing: Chongqing University,2020. | |
19 | 储艺. 基于多线激光雷达的多目标跟踪方法研究[D]. 桂林: 桂林电子科技大学, 2022. |
CHU Y. Research on multi-target tracking method based on multi-line lidar[D]. Guilin: Guilin University of Electronic Technology, 2022. | |
20 | 曹培. 面向自动驾驶的双传感器信息融合目标检测及姿态估计[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
CAO P. Dual sensor information fusion target detection and pose estimation for autonomous driving[D]. Harbin: Harbin Institute of Technology,2019. | |
21 | 周志华. 机器学习[M]. 北京:清华大学出版社, 2016. |
ZHOU Z H. Machine learning [M]. Beijing: Tsinghua University Press,2016. | |
22 | KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal generation and object detection from view aggregation[J]. arXiv: 1712.02294[CS],2018. |
23 | ZHOU A, LI J, SUN Q, et al. A security authentication method based on trust evaluation in VANETs[J]. EURASIP Journal on Wireless Communications and Networking, 2015, 2015(1): 59. |
[1] | Pangwei Wang,Cheng Liu,Yunfeng Wang,Mingfang Zhang. Multi-lane Trajectory Optimization for Intelligent Connected Vehicles in Urban Road Network [J]. Automotive Engineering, 2024, 46(2): 241-252. |
[2] | Zheng Zuo,Yunpeng Wang,Bin Ma,Bosong Zou,Yaoguang Cao,Shichun Yang. Quantitative Evaluation and Analysis of On-board Network Components Risk Rate Based on AFC-TARA [J]. Automotive Engineering, 2023, 45(9): 1553-1562. |
[3] | Siyu Wu,Wenhao Yu,Xingyu Xing,Yuxin Zhang,Chuzhao Li,Xueke Li,Xinyu Gu,Yunwei Li,Xiaohan Ma,Wei Lu,Zheng Wang,Zhenmao Hao,Hong Wang,Jun Li. Methodology of Critical Scenarios-Based Dual-Loop Testing and Verification for Safety of the Intended Functionality [J]. Automotive Engineering, 2023, 45(9): 1583-1607. |
[4] | Haotian Liu,Hongqian Wei,Peicheng Shi,Youtong Zhang. The Masquerade Intrusion Detection Technique for Automotive ECUs Based on the Hybrid Feature Extraction of Frame Intervals and Bus Voltages [J]. Automotive Engineering, 2023, 45(11): 2070-2081. |
[5] | Pengfei Li,Yugong Luo,Chang Liu,Weiwei Kong. Control Strategies Design of Intelligent and Connected Vehicle Platoon Under Emergency Conditions [J]. Automotive Engineering, 2022, 44(3): 299-307. |
[6] | Yisong Chen,Yunxiang Xing,Xiaoqin Xiong,Libo Lan,Ying Cao,Yongtao Liu. Research on Technical and Economic Evaluation System of Intelligent Connected Vehicles Based on Patent Analysis [J]. Automotive Engineering, 2021, 43(9): 1271-1277. |
[7] | Hongqing Tian,Feng Ding,Xunjia Zheng,Heye Huang,Jianqiang Wang. Motion Planning Based on Virtual Force of Potential Field for Intelligent Connected Vehicles [J]. Automotive Engineering, 2021, 43(4): 518-526. |
[8] | Xiangmo Zhao,Xinrui Zhang,Runmin Wang,Zhigang Xu,Haijin Fan. Cooperative Optimization Control Method of Traffic Signals and Vehicle Trajectories at Connected Intersection [J]. Automotive Engineering, 2021, 43(11): 1577-1586. |
[9] | Li Keqiang, Chang Xueyang, Li Jiawen, Xu Qing, Gao Bolin, Pan Jian. Cloud Control System for Intelligent and Connected Vehicles and Its Application [J]. Automotive Engineering, 2020, 42(12): 1595-1605. |
[10] | Yan Gang, Xiao Kun, Chu Wenbo. Research on Virtualization Technology for ComputingPlatform of Intelligent Connected Vehicles [J]. Automotive Engineering, 2020, 42(1): 33-37. |
|