Automotive Engineering ›› 2024, Vol. 46 ›› Issue (6): 995-1005.doi: 10.19562/j.chinasae.qcgc.2024.06.006
Previous Articles Next Articles
Juan Zeng1,2,Hao Wang1,Bo Xu1,Hongchang Zhang1,2()
Received:
2023-12-21
Revised:
2024-02-22
Online:
2024-06-25
Published:
2024-06-19
Contact:
Hongchang Zhang
E-mail:zhc112@126.com
Juan Zeng,Hao Wang,Bo Xu,Hongchang Zhang. Research on the Driver's Hazard Perception State Recognition Model Based on Strength and Weakness Perception Design[J].Automotive Engineering, 2024, 46(6): 995-1005.
"
指标描述 | 单位 | 弱危险感知状态 | 强危险感知状态 | 正态p | 显著p | ||
---|---|---|---|---|---|---|---|
M | SD | M | SD | ||||
最大制动踏板力 | daN | 26.925 | 13.414 | 22.217 | 8.273 | 0.004* | 0.000* |
制动踏板力标准差 | daN | 7.851 | 4.941 | 7.417 | 2.843 | 0.094 | 0.353 |
油门开度标准差 | 0.055 | 0.038 | 0.081 | 0.043 | 0.113 | 0.000* | |
转向盘转角标准差 | (°)/s | 1.990 | 7.053 | 1.672 | 3.698 | 0.000* | 0.577 |
预减速时间 | s | 0.800 | 1.468 | 3.226 | 3.157 | 0.000* | 0.000* |
车头时距 | s | 0.837 | 1.567 | 3.566 | 2.170 | 0.000* | 0.000* |
车速均值 | m/s | 16.331 | 3.778 | 12.657 | 2.749 | 0.463 | 0.000* |
车速标准差 | m/s | 2.430 | 2.317 | 4.033 | 1.799 | 0.230 | 0.000* |
加速度均值 | m/s2 | -0.655 | 0.544 | -0.665 | 0.431 | 0.292 | 0.859 |
加速度标准差 | m/s2 | 2.071 | 1.160 | 1.588 | 0.728 | 0.629 | 0.000* |
左眼瞳孔直径变异系数 | 0.055 | 0.022 | 0.054 | 0.024 | 0.032* | 0.434 | |
右眼瞳孔直径变异系数 | 0.056 | 0.022 | 0.055 | 0.022 | 0.065 | 0.635 | |
注视时长百分比 | % | 57.129 | 22.600 | 55.859 | 24.147 | 0.016* | 0.602 |
注视次数 | 次 | 12.242 | 5.508 | 15.325 | 7.023 | 0.144 | 0.000* |
单次注视时长 | s | 0.640 | 0.317 | 0.621 | 0.292 | 0.001* | 0.660 |
跳视次数 | 次 | 34.150 | 17.039 | 41.000 | 19.967 | 0.013* | 0.000* |
单次眼跳时长 | s | 0.046 | 0.010 | 0.047 | 0.011 | 0.019* | 0.152 |
眼动幅度 | 4.212 | 19.725 | 3.743 | 11.418 | 0.000* | 0.171 | |
眼动速度均值 | (°)/s | 28.082 | 12.416 | 27.344 | 12.060 | 0.013 | 0.852 |
眼动速度标准差 | (°)/s | 72.242 | 26.033 | 70.783 | 23.672 | 0.042 | 0.942 |
1 | ARSLANYILMAZ A, SULLINS J. Multi-player online simulated driving game to improve hazard perception[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 61: 188-200. |
2 | CAO S, SAMUEL S, MURZELLO Y, et al. Hazard perception in driving: a systematic literature review[J]. Transportation Research Record: Journal of the Transportation Research Board, 2022, 2676: 1-25. |
3 | COYNE P H. Roadcraft: the essential police driver’s handbook[M]. London: The Stationary Office, 1997. |
4 | POLLATSEK A, NARAYANAAN V, PRADHAN A, et al. Using eye movements to evaluate a PC-based risk awareness and perception training program on a driving simulator[J]. Human Factors, 2006, 48(3): 447-464. |
5 | BAILLY B, BELLET T, GOUPIL C. Drivers’ mental representations: experimental study and training perspectives[C]. International Conference on Driver Behaviour and Training, 1st, 2003, Stratford-Upon-Avon, United Kingdom, 2003. |
6 | ALLEN R W, ROSENTHAL T J, PARK G, et al. Experience with a low cost PC-based system for young driver training[C]. International Conference on Driver Behaviour and Training, 1st, 2003, Stratford-Upon-Avon, United Kingdom, 2003. |
7 | MACKENZIE A K, HARRIS J M. Characterizing visual attention during driving and non-driving hazard perception tasks in a simulated environment[C]. Proceedings of the Symposium on Eye Tracking Research and Applications. New York, NY, USA: Association for Computing Machinery, 2014: 127-130. |
8 | TAKAHASHI R, KOBAYASHI M, SASAKI T, et al. Driving simulation test for evaluating hazard perception: elderly driver response characteristics[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2017, 49: 257-270. |
9 | 郭凤香, 熊昌安, 万华森, 等. 风险情境下老年驾驶人行为特性研究[J]. 中国公路学报, 2021, 34(9): 309-321. |
GUO F X, XIONG C A,WAN H S, et al. Behavioral characteristics of older drivers based on risk perception[J]. China Journal of Highway and Transport, 2021, 34(9): 309-321. | |
10 | VLAKVELD W, ROMOSER M R E, MEHRANIAN H, et al. Do crashes and near crashes in simulator-based training enhance novice drivers’ visual search for latent hazards?[J]. Transportation Research Record, 2011, 2265: 153-160. |
11 | 魏田正, 林淼, 李晨新, 等. 基于隐性危险驾驶人感知特性及判别模型研究[J]. 中国安全生产科学技术, 2021, 17(3): 175-181. |
WEI T Z, LIN M, LI C X, et al. Study of driver’s hazard perception and discriminant model based on covert hazard[J]. Journal of Safety Science and Technology, 2021, 17(3): 175-181. | |
12 | 魏田正, 魏雯, 李海梅, 等. 基于XGBoost算法的危险场景驾驶行为模式分析及安全评估[J]. 交通信息与安全, 2022, 40(5): 53-60. |
WEI T Z, WEI W, LI H M, et al. An analysis of driving behavior model and safety assessment under risky scenarios based on an XGBoost algorithm [J]. Journal of Transport Information and Safety, 2022, 40(5): 53-60. | |
13 | 秦雅琴, 张红强, 熊坚, 等. 风险驾驶模拟情境下驾驶人风险感知研究[J]. 交通运输系统工程与信息, 2015, 15(2): 142-148. |
QIN Y Q,ZHANG H Q, XIONG J, et al. Driver’s hazard perception under simulating risk driving scenarios [J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(2): 142-148. | |
14 | 谷志朋, 杨京帅, 楚彭子, 等. 基于危险源位置的驾驶人危险感知研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(5): 789-793. |
GU Z P, YANG J S, CHU P Z, et al. Research on driver's hazard perception based on the location of hazard sources [J]. Journal of Wuhan University of Techonlogy(Transportation Science & Engineering), 2020, 44(5): 789-793. | |
15 | 杨京帅, 李秀丽, 任书杭, 等. 驾驶人危险感知影响因素建模与试验[J]. 长安大学学报(自然科学版), 2015, 35(5): 104-110. |
YANG J S, LI X L, REN S H, et al. Modeling and experimental of influencing factors of drivers' hazard perception [J]. Journal of Chang'an University(Natural Science Edition), 2015, 35(5): 104-110. | |
16 | CRUNDALL D. Hazard prediction discriminates between novice and experienced drivers[J]. Accident Analysis & Prevention, 2016, 86: 47-58. |
17 | BRIGGS G F, HOLE G J, LAND M F. Imagery-inducing distraction leads to cognitive tunnelling and deteriorated driving performance[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 38: 106-117. |
18 | BROBERG T, DUKIC WILLSTRAND T. Safe mobility for elderly drivers—considerations based on expert and self-assessment[J]. Accident Analysis & Prevention, 2014, 66: 104-113. |
19 | 秦雅琴, 梁锺月, 贾现广, 等. 驾驶人风险感知类型预测模型研究[J]. 安全与环境学报, 2019, 19(4): 1266-1273. |
QIN Y Q, LIANG Z Y, JIA X G, et al. Research on the prediction model of driver's risk perception type [J]. Journal of Safety and Environment, 2019, 19(4): 1266-1273. | |
20 | CHAN E, PRADHAN A K, POLLATSEK A, et al. Are driving simulators effective tools for evaluating novice drivers’ hazard anticipation, speed management, and attention maintenance skills?[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2010, 13(5): 343-353. |
21 | ZHANG W, WANG Y, FENG Z, et al. A method to improve the hazard perception of young novice drivers based on Bandura’s observational learning theory: supplement to expert commentary training[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 85: 133-149. |
22 | ASADAMRAJI M, SAFFARZADEH M, ROSS V, et al. A novel driver hazard perception sensitivity model based on drivers’ characteristics: a simulator study[J]. Traffic Injury Prevention, 2019, 20(5): 492-497. |
23 | LI Z, BAO S, KOLMANOVSKY I V, et al. Visual-manual distraction detection using driving performance indicators with naturalistic driving data[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8): 2528-2535. |
24 | 糜江, 喻恺, 黄菊. 基于多模轨迹融合的货车危险驾驶行为辨识[J]. 中国交通信息化, 2023(2): 113-117. |
MI J, YV K, HUANG J. Truck hazard driving based on multi-mode trajectory fusion is identified [J]. China ITS Journal, 2023(2): 113-117. | |
25 | 唐智慧, 郑伟皓, 吴海涛. 基于Kohonen-SVM模型的驾驶行为险态动态辨识[J]. 安全与环境学报, 2018, 18(4): 1386-1390. |
TANG Z H, ZHENG W H, WU H T. Dynamic identification of dangerous driving behavior based on Kohonen-SVM model [J]. Journal of Safety and Environment, 2018, 18(4): 1386-1390. | |
26 | 张长水. 机器学习面临的挑战[J]. 中国科学:信息科学, 2013, 43(12): 1612-1623. |
ZHANG C S. Challenges of machine learning [J]. SCIENTIA SINICA Informationis, 2013, 43(12): 1612-1623. | |
27 | MOLCHANOV P, GUPTA S, KIM K, et al. Multi-sensor system for driver’s hand-gesture recognition[C]. 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG): Vol. 1. 2015: 1-8. |
28 | ZHANG C, PATEL M, BUTHPITIYA S, et al. Driver classification based on driving behaviors[C]. Proceedings of the 21st International Conference on Intelligent User Interfaces. Sonoma California USA, 2016: 80-84. |
29 | WATLING C N, HOME M. Hazard perception performance and visual scanning behaviours: the effect of sleepiness[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 90: 243-251. |
30 | LEWSEY J. Medical statistics: a guide to data analysis and critical appraisal[J]. Annals of The Royal College of Surgeons of England, 2006, 88(6): 603. |
31 | GHASEMI A, ZAHEDIASL S. Normality tests for statistical analysis: a guide for non-statisticians[J]. International Journal of Endocrinology and Metabolism, 2012, 10(2): 486-489. |
32 | KRZYWINSKI M, ALTMAN N. Nonparametric tests[J]. Nature Methods, 2014, 11(5): 467-468. |
33 | 陈凯亮, 李唯真, 张泽庆. 融合XGBoost与SHAP的机动车交通事故致因机理分析[J]. 汽车实用技术, 2023, 48(4): 179-185. |
CHEN K L, LI W Z, ZHANG Z Q. Severity analysis of vehicle traffic accidents based on XGBoost and SHAP [J]. Automobile Applied Technology, 2023, 48(4): 179-185. | |
34 | 肖宇, 赵建有, 叱干都, 等. 基于XGBoost的短时出租车速度预测模型[J]. 交通信息与安全, 2022, 40(3): 163-170. |
XIAO Y, ZHAO J Y, CHI G D, et al. A short-term prediction model for taxi speed based on XGBoost[J]. Journal of Transport Information and Safety, 2022, 40(3): 163-170. | |
35 | 彭一川, 李崇奕, 王可, 等. 基于权重的欠采样提升算法识别激进驾驶员[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(2): 195-201. |
PENG Y C, LI C Y, WANG K, et al. A weight-based undersampling boosting algorithm identifies aggressive drivers [J]. Journal of Wuhan University of Techonlogy(Transportation Science & Engineering), 2021, 45(2): 195-201. | |
36 | 高雪林, 汤厚骏, 沈佳平, 等. 基于XGBoost的高速公路事故类型及严重程度预测方法[J]. 交通信息与安全, 2023, 41(4): 55-63. |
GAO X L, TANG H J, SHEN J P, et al. A method for predicting the type and severity of freeway accidents based on XGBoost[J]. Journal of Transport Information and Safety, 2023, 41(4): 55-63. | |
37 | 唐瀛, 闫仁武. 基于改进SVM算法的车牌识别研究[J]. 现代计算机, 2021, 27(30): 88-93. |
TANG Y, YAN R W. License plate recognition based on improved SVM algorithm[J]. Modern Computer, 2021, 27(30):88-93. |
[1] | Weidong Liu,Zongzhi Han,Zhenhai Gao,Yanhu Kang. Real-Time Pavement Recognition Technology Based on Intelligent Tire System [J]. Automotive Engineering, 2024, 46(4): 617-625. |
[2] | Lin Chen,Manping He,Shuxiao Wu,Deqian Chen,Mingsi Zhao,Haihong Pan. Fast Clustering of Retired Lithium-ion Batteries Based on Adaptive Fuzzy C-means Algorithm [J]. Automotive Engineering, 2024, 46(4): 643-651. |
[3] | Xinghua Wang,Lin Hu,Yong Peng,Xianhui Wu,Guoliang Xiang,Qian Xu. Research on Drivers' Hazard Perception Before Vehicle-to-Powered Two-Wheeler Crashes [J]. Automotive Engineering, 2024, 46(3): 498-508. |
[4] | Yanli Ma, Qin Qin, Fangqi Dong, Yining Lou. Takeover Risk Assessment Model Based on Risk Field Theory Under Different Cognitive Secondary Tasks [J]. Automotive Engineering, 2024, 46(1): 9-17. |
[5] | Jiqing Chen,Zihan Li,Fengchong Lan,Xinping Jiang,Wei Pan,Jikai Chen. Real-Vehicle Battery Health State Estimation Based on Nonlinear Reduced-Dimensional IC Features [J]. Automotive Engineering, 2023, 45(2): 199-208. |
[6] | Gege Cui,Lü Chao,Jinghang Li,Zheyu Zhang,Guangming Xiong,Jianwei Gong. Data-Driven Personalized Scenario Risk Map Construction for Intelligent Vehicles [J]. Automotive Engineering, 2023, 45(2): 231-242. |
[7] | Yanli Ma,Jun Lu,Jieyu Zhu,Xiaoxue Han. Take-over Performance Prediction Under Different Cognitive Loads of Non-driving Tasks in Highly Automated Driving [J]. Automotive Engineering, 2023, 45(12): 2330-2337. |
[8] | Junzhao Jiang,Wenhao Yang,Bin Peng,Ting Guo,Yekai Xu,Guozhuo Wang. Driving Range Prediction of Fuel Cell Vehicles Based on Energy Consumption Weighting Strategy [J]. Automotive Engineering, 2023, 45(12): 2357-2365. |
[9] | Zhicheng He,Zejun Xie,Kan Liu,Enlin Zhou,Qian Tang,Yuanyi Huang. Collaborative Design Optimization of Pure Electric Vehicle Drivetrain and Motor Structure Parameters [J]. Automotive Engineering, 2023, 45(11): 2113-2122. |
[10] | Yubo Lian,Heping Ling,Junbin Wang,Hua Pan,Zhao Xie. A Real-time Thermal Runaway Detection Method of Power Battery Based on Guassian Mixed Model and Hidden Markov Model [J]. Automotive Engineering, 2023, 45(1): 139-146. |
[11] | Wenmin Long,Guangquan Lu,Xi Shi,Haitian Tan. Determination Method of Forward Collision Warning Indicator and Threshold Based on Drivers’ Car-Following Characteristics [J]. Automotive Engineering, 2022, 44(9): 1339-1349. |
[12] | Jian Zhao,Yaxin Li,Jing Tong,Bing Zhu,Weixiang Wu,Bohua Sun,Jiayi Han. Cross-Country Road Classification Method Based on Vehicle Dynamic Response Characteristics [J]. Automotive Engineering, 2022, 44(6): 909-918. |
[13] | Jing Huang,Yang Peng,Ye Huang,Xiaoyan Peng. Evaluation of Driver's Mental Load State Considering the Influence of Noisy Labels [J]. Automotive Engineering, 2022, 44(5): 771-777. |
[14] | Jie Hu,Xueling Zhu,Chen He,Guangyu Yang. Prediction on Battery State of Health of Electric Vehicles Based on Real Vehicle Data [J]. Automotive Engineering, 2021, 43(9): 1291-1299. |
[15] | Baicang Guo,Xianyi Xie,Lisheng Jin,Hui Rong,Yang He,Bingdong Ji. Braking Response Time Prediction Model Based on Multi-dimensional Driving Characteristics [J]. Automotive Engineering, 2021, 43(11): 1683-1692. |
|