Automotive Engineering ›› 2021, Vol. 43 ›› Issue (11): 1720-1729.doi: 10.19562/j.chinasae.qcgc.2021.11.018
Previous Articles Next Articles
Received:
2021-05-24
Revised:
2021-07-01
Online:
2021-11-25
Published:
2021-11-22
Contact:
Ximing Cheng
E-mail:cxm2004@bit.edu.com
Yizhan Xie,Ximing Cheng. Review of State Estimation of Lithium-ion Battery with Machine Learning[J].Automotive Engineering, 2021, 43(11): 1720-1729.
1 | ZOU Y, HU X, MA H, et al. Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles[J]. Journal of Power Sources, 2015, 273:793-803. |
2 | XIONG R, CAO J, YU Q, et al. Critical review on the battery state of charge estimation methods for electric vehicles[J]. IEEE Access, 2018, 6:1832-1843. |
3 | 罗勇, 祁朋伟, 黄欢, 等. 基于容量修正的安时积分SOC估算方法研究[J]. 汽车工程, 2020, 42(5):681-687. |
LUO Y, QI P, HUANG H, et al. Study on battery SOC estimation by ampere⁃hour integral method with capacity correction[J]. Automotive Engineering, 2020, 42(5):681-687 | |
4 | ABOUCHABAKA J, BOUREKKADI S, OMARI O, et al. Fitting the OCV⁃SOC relationship of a battery lithium⁃ion using genetic algorithm method[C]. EDP Sciences, 2021. |
5 | 谢旺. 基于Thevenin等效电路模型的锂离子电池组SOC估算研究[D]. 上海:上海交通大学, 2013. |
XIE W.Study on SOC estimation of lithium⁃ion battery module based on thevenin equivalent circuit model[D]. Shanghai: Shanghai Jiao Tong University,2013. | |
6 | 张文华, 吴三毛, 刘平, 等. C/LiFePO4动力电池电化学交流阻抗谱的研究[J]. 电源技术, 2015, 39(9):1838-1842. |
ZHANG W,WU S,LIU P,et al. Study on EIS of C/LiFePO4 power battery[J].Chinese Journal of Power Sources, 2015, 39(9):1838-1842. | |
7 | 徐鑫珉, 王练, 史慧玲. 基于电化学阻抗谱的电池老化寿命研究[J]. 电源技术, 2015, 39(12):2579-2583. |
XU X,WANG L, SHI H. Research on battery aging mechanisms based on electrochemical impedance spectroscopy [J]. Chinese Journal of Power Sources, 2015, 39(12):2579-2583. | |
8 | SU R, LIU L, ZHANG T, et al. An online capacity estimation method for LiFePO4 battery module with incremental capacity curve processed by tracking differentiator under noises[C]. SPIE, 2020. |
9 | 华寅, 许敏. 基于双非线性预测滤波法的锂离子电池SOH估计[J]. 电源技术, 2018, 42(9):1321-1324. |
HUA Y, XU M. State of health estimation of lithium ion battery by dual nonlinear predictive filter for electric vehicles [J]. Chinese Journal of Power Sources, 2018, 42(9):1321-1324. | |
10 | CEN Z, KUBIAK P. Lithium⁃ion battery SOC/SOH adaptive estimation via simplified single particle model[J]. International Journal of Energy Research, 2020, 44(15):12444-12459. |
11 | ASHWIN T R, CHUNG Y M, WANG J. Capacity fade modelling of lithium-ion battery under cyclic loading conditions[J]. Journal of Power Sources, 2016, 328:586-598. |
12 | WANG A, CHEN H, JIN P, et al. RUL estimation of lithium-ion power battery based on DEKF algorithm[C] . Institute of Electrical and Electronics Engineers Inc, 2019: 1851-1856. |
13 | HECHT⁃NIELSEN R. Theory of the backpropagation neural network[C] . Piscataway, Washington, DC, USA: Publ by IEEE, 1989: 593-605. |
14 | PARK J, SANDBERG I W. Universal approximation using radial⁃basis⁃function networks[J]. Neural Computation, 1991, 3(2):246–257. |
15 | 刘兴涛, 李坤, 武骥, 等. 基于EKF⁃SVM算法的动力电池SOC估计[J]. 汽车工程, 2020, 42(11):1522-1528,1544. |
LIU X, LI K, WU J, et al. State of charge estimation for traction battery based on EKF⁃SVM algorithm[J].Automotive Engineering, 2020, 42(11):1522-1528,1544. | |
16 | 戴海峰, 姜波, 魏学哲, 等. 基于充电曲线特征的锂离子电池容量估计[J]. 机械工程学报, 2019, 55(20):52–59. |
DAI H, JIANG B, WEI X, et al. Capacity estimation of lithium-ion batteries based on charging curve features[J]. Journal of Mechanical Engineering, 2019, 55(20):52-59. | |
17 | 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39(01):105-111,325. |
ZHOU D, SONG X, LU W, et al. Real⁃time SOH estimation algorithm for lithium⁃ion batteries based on daily segment charging data[J]. Proceedings of the Chinese Society of Electrical Engineering, 2019, 39(1):105-111,325. | |
18 | HU X, YANG X, FENG F, et al. A particle filter and long short⁃term memory fusion technique for lithium⁃ion battery remaining useful life prediction[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2021, 143(6). |
19 | 鲍伟, 葛建军. 基于稀疏采样数据的电动公交车电池SOC预测方法研究[J]. 汽车工程, 2020, 42(3):367-374. |
BAO W, GE J. Study on battery SOC prediction method for electric bus based on sparsely sampled data[J]. Automotive Engineering, 2020, 42(3):367–374. | |
20 | HANNAN M A, LIPU M, HUSSAIN A, et al. Neural network approach for estimating state of charge of lithium⁃ion battery using backtracking search algorithm[J]. IEEE Access, 2018, 6:10069-10079. |
21 | LIPU M H , HANNAN M A , HUSSAIN A , et al. Extreme learning machine model for state⁃of⁃charge estimation of lithium⁃ion battery using gravitational search algorithm[J]. IEEE Transactions on Industry Applications, 2019,55 (4): 4225-4234. |
22 | KHALID A, SUNDARARAJAN A, ACHARYA I, et al. Prediction of Li⁃ion battery state of charge using multilayer perceptron and long short⁃term memory models[C].Institute of Electrical and Electronics Engineers Inc, 2019. |
23 | HANNAN M A, HOW D, HOSSAIN LIPU M S, et al. SOC estimation of Li⁃ion batteries with learning rate⁃optimized deep fully convolutional network[J]. IEEE Transactions on Power Electronics, 2021, 36(7):7349-7353. |
24 | ZHAO X, XUAN D, ZHAO K, et al. Elman neural network using ant colony optimization algorithm for estimating of state of charge of lithium⁃ion battery[J]. Journal of Energy Storage, 2020, 32:101789. |
25 | HOSSAIN LIPU M S, HUSSAIN A, SAAD M, et al. Improved recurrent NARX neural network model for state of charge estimation of lithium⁃ion battery using pso algorithm[C]. Institute of Electrical and Electronics Engineers Inc, 2018: 354-359. |
26 | ABBAS G, NAWAZ M, KAMRAN F. Performance comparison of NARX RNN⁃LSTM neural networks for LiFePO4 battery state of charge estimation[C]. Institute of Electrical and Electronics Engineers Inc, 2019: 463-468. |
27 | CHEMALI E, KOLLMEYER P J, PREINDL M, et al. Long short-term memory networks for accurate state⁃of⁃charge estimation of Li⁃ion batteries[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8):6730-6739. |
28 | 李嘉波, 李忠玉, 焦生杰, 等. 基于反馈最小二乘支持向量机锂离子状态估计[J]. 储能科学与技术, 2020, 9(3):951-957. |
LI J, LI Z, JIAO S, et al. Lithium⁃ion state estimation based on feedback least square support vector machine [J]. Energy Storage Science and Technology, 2020, 9(3):951-957. | |
29 | XIAO F, LI C, FAN Y, et al. State of charge estimation for lithium-ion battery based on Gaussian process regression with deep recurrent kernel[J]. International Journal of Electrical Power and Energy Systems, 2021, 124. |
30 | 陈德海, 马原, 潘韦驰. 改进PSO⁃RBF模型的分阶查表法荷电状态估计[J]. 储能科学与技术, 2019, 8(6):1190–1196. |
CHEN D, MA Y, PAN W. Improved state⁃of⁃the⁃art look⁃up table method for charge state estimation of PSO-RBF model[J]. Energy Storage Science and Technology, 2019, 8(6):1190-1196. | |
31 | CIVICIOGLU P. Backtracking search optimization algorithm for numerical optimization problems[J]. Applied Mathematics and Computation, 2013, 219(15):8121-8144. |
32 | FASAHAT M, MANTHOURI M. State of charge estimation of lithium-ion batteries using hybrid autoencoder and long short term memory neural networks[J]. Journal of Power Sources, 2020, 469:228375. |
33 | 孔祥创, 赵万忠, 王春燕. 基于BP-EKF算法的锂电池SOC联合估计[J]. 汽车工程, 2017, 39(6):648-652. |
KONG X, ZHAO W, WANG C. Co⁃estimation of Lithium battery SOC based on BP⁃EKF algorithm[J]. Automotive Engineering, 2017, 39(6):648-652. | |
34 | SINGH K V, BANSAL H O, SINGH D. Hardware⁃in⁃the⁃loop implementation of ANFIS based adaptive SoC estimation of lithium⁃ion battery for hybrid vehicle applications[J]. Journal of Energy Storage, 2020, 27. |
35 | 李超然, 肖飞, 樊亚翔, 等. 基于门控循环单元神经网络和Huber⁃M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法[J]. 电工技术学报, 2020, 35(9):2051-2062. |
LI C, XIAO F, FAN Y, et al. A hybrid approach to lithium⁃ion battery SOC estimation based on recurrent neural network with gated recurrent unit and huber⁃M robust Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(9):2051-2062. | |
36 | WANG Q. Battery state of charge estimation based on multi⁃model fusion[C]. Institute of Electrical and Electronics Engineers Inc, 2019: 2036-2041. |
37 | 范兴明, 王超, 张鑫, 等. 基于增量学习相关向量机的锂离子电池SOC预测方法[J]. 电工技术学报, 2019, 34(13):2700-2708. |
FAN X, WANG C, ZHANG X, et al. A prediction method of li-ion batteries SOC based on incremental learning relevance vector machine[J]. Transactions of China Electrotechnical Society, 2019, 34(13):2700-2708. | |
38 | 刘昊天, 王萍, 程泽. 一种编解码器模型的锂离子电池健康状态估算[J]. 中国电机工程学报, 2020:1-9. |
LIU H, WANG P, CHENG Z. A novel method based on encoder⁃decoder framework for Li⁃ion battery state of health estimation[J]. Proceedings of the Chinese Society of Electrical Engineering, 2021, 41(5):1851-1859. | |
39 | 徐宏东, 高海波, 林治国, 等. 基于CS⁃SVR模型的锂离子电池SOH预测[J]. 电池, 2020, 50(5):424-427. |
XU H, GAO H, LIN Z, et al. Prediction for SOH of Li⁃ion battery based on CS⁃SVR model [J]. Battery Bimonthly, 2020, 50(5):424-427. | |
40 | ZHANG Y, YAO H, QI J J, et al. Real⁃time capacity estimation of lithium⁃ion batteries using a novel ensemble of multi⁃kernel relevance vector machines[C]. Institute of Electrical and Electronics Engineers Inc, 2019: 230-236. |
41 | 徐元中, 曹翰林, 吴铁洲. 基于SA-BP神经网络算法的电池SOH预测[J]. 电源技术, 2020, 44(3):341-345. |
XÜ Y, CAO H, WU T. Estimation of SOH for battery based on SA⁃BP neural network [J]. Chinese Journal of Power Sources, 2020, 44(3):341-345. | |
42 | 周才杰, 汪玉洁. 基于自动编码器特征提取的锂电池健康状态估计[C]. 第 21 届中国系统仿真技术及其应用学术年会论文集 (CCSSTA21st 2020), 2020. |
ZHOU C, WANG Y. State of health estimation for lithium⁃ion battery based on the feature extracted by auto⁃encoder[C]. CCSSTA21st , 2020. | |
43 | 潘海鸿, 吕治强, 付兵, 等. 采用极限学习机实现锂离子电池健康状态在线估算[J]. 汽车工程, 2017, 39(12):1375-1381,1396. |
PAN H, LÜ Z, FU B, et al. Online estimation of lithium⁃ion battery's state of health using extreme learning machine[J]. Automotive Engineering, 2017, 39(12):1375-1381 , 1396. | |
44 | LEE J H, KIM H S, LEE I S. Multilayer neural network⁃based battery module SOH diagnosis[J]. International Journal of Engineering Research and Technology, 2020, 13(2):316-319. |
45 | KHUMPROM P, YODO N. A data⁃driven predictive prognostic model for lithium⁃ion batteries based on a deep learning algorithm[J]. Energies, 2019, 12(4). |
46 | SHEN S, SADOUGHI M, CHEN X, et al. A deep learning method for online capacity estimation of lithium⁃ion batteries[J]. Journal of Energy Storage, 2019, 25:100817. |
47 | RAHBARI O, MAYET C, OMAR N, et al. Battery aging prediction using input⁃time⁃delayed based on an adaptive neuro⁃fuzzy inference system and a group method of data handling techniques[J]. Applied Sciences (Switzerland), 2018, 8(8). |
48 | KIM S J, KIM S H, LEE H M, et al. State of health estimation of Li⁃ion batteries using multi⁃input LSTM with optimal sequence length[C]. Institute of Electrical and Electronics Engineers Inc, 2020: 1336–1341. |
49 | KENNEDY J, EBERHART R. Particle swarm optimization[C] . Piscataway, NJ, United States: IEEE, 1995: 1942-1948. |
50 | GUO W, LI S, MIAO Q, et al. A deep learning method with ensemble learning for capacity estimation of lithium⁃ion battery[C]. Institute of Electrical and Electronics Engineers Inc, 2020. |
51 | LI Y, ZOU C, BERECIBAR M, et al. Random forest regression for online capacity estimation of lithium⁃ion batteries[J]. Applied Energy, 2018, 232:197-210. |
52 | SHEN S, SADOUGHI M, LI M, et al. Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium⁃ion batteries[J]. Applied Energy, 2020, 260:114296. |
53 | ZHANG Y, XIONG R, HE H, et al. A LSTM⁃RNN method for the lithuim⁃ion battery remaining useful life prediction[C]. 2017 Prognostics and System Health Management Conference (PHM⁃Harbin), 2017: 1-4. |
54 | SONG Y, LI L, PENG Y, et al. Lithium⁃ion battery remaining useful life prediction based on GRU⁃RNN[C]. Institute of Electrical and Electronics Engineers Inc, 2018: 317-322. |
55 | GOU B, XU Y, FANG S, et al. Remaining useful life prediction for lithium⁃ion battery using ensemble learning method[C]. IEEE Computer Society, 2019. |
56 | CHENG Y, SONG D, WANG Z, et al. An ensemble prognostic method for lithium⁃ion battery capacity estimation based on time⁃varying weight allocation[J]. Applied Energy, 2020, 266:114817. |
57 | SUSILO D D, WIDODO A, PRAHASTO T, et al. State of health estimation of lithium⁃ion batteries based on combination of gaussian distribution data and least squares support vector machines regression[M]. Trans Tech Publications Ltd, 2018. |
58 | 张朝龙, 何怡刚, 袁莉芬. 基于EEMD和MKRVM的锂电池剩余寿命预测方法[J]. 电力系统及其自动化学报, 2018, 30(7):38-44. |
ZHANG C, HE Y, YUAN L. Prediction approach for remaining useful life of lithium⁃ion battery based on EEMD and MKRVM [J]. Proceedings of the CSU⁃EPSA, 2018, 30(7):38-44. | |
59 | LIU J, CHEN Z. Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model[J]. IEEE Access, 2019, 7:39474-39484. |
60 | SBARUFATTI C, CORBETTA M, GIGLIO M, et al. Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks[J]. Journal of Power Sources, 2017, 344:128-140. |
61 | LIU W, YAN L, ZHANG X, et al. A denoising SVR⁃MLP method for remaining useful life prediction of lithium⁃ion battery[C]. Institute of Electrical and Electronics Engineers Inc, 2019: 545-550. |
62 | REN L, DONG J, WANG X, et al. A data⁃driven auto⁃CNN⁃LSTM prediction model for lithium⁃ion battery remaining useful life[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5):3478-3487. |
63 | GUARINO A, ZAMBONI W, MONMASSON E. A comparison of ensemble machine learning techniques for the estimate of residual capacity of Li⁃ion batteries[C] . Institute of Electrical and Electronics Engineers Inc, 2020: 1307-1312. |
64 | YANG F, WANG D, XU F, et al. Lifespan prediction of lithium⁃ion batteries based on various extracted features and gradient boosting regression tree model[J]. Journal of Power Sources, 2020, 476:228654. |
65 | Global technical regulation No. 15 (Worldwide harmonized light vehicles test procedure)[EB/OL]. [2021-04-16]. https://unece.org/transport/standards/transport/vehicle⁃regulations⁃wp29/global⁃technical⁃regulations⁃gtrs. |
66 | Addenda to the 1958 agreement (Regulations NO.101 and NO.83)[EB/OL]. [2021-04-16]. https://unece.org/transport/vehicle⁃regulations⁃wp29/standards/addenda-1958-agreement⁃regulation⁃101-120. |
67 | 孙逢春, 孟祥峰, 林程, 等. 电动汽车动力电池动态测试工况研究[J]. 北京理工大学学报, 2010, 30(3):297–301. |
SUN F, MENG X, LIN C, et al. Dynamic stress test profile of power battery for electric vehicle [J]. Transactions of Beijing Institute of Technology, 2010, 30(3):297-301. | |
68 | MENG J, CAI L, D⁃ISTROE, et al. An optimized ensemble learning framework for lithium⁃ion battery state of health estimation in energy storage system[J]. Energy, 2020, 206:118140. |
69 | SAHA B, GOEBEL K. Battery data set[DB/OL]. NASA Ames Prognostics Data Repository, 2007. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic⁃data⁃repository/publications/#battery. |
70 | BOLE B, KULKARNI C, DAIGLE M. Randomized battery usage data set[DB/OL]. NASA Ames Prognostics Data Repository, NASA Ames Research Center, 2014. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic⁃data⁃repository/publications/#battery. |
71 | Battery data center for advanced life cycle engineering[EB/OL]. [2021-03-24]. https://calce.umd.edu/battery⁃data. |
72 | SEVERSON K A, ATTIA P M, JIN N, et al. Data⁃driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5):383-391. |
73 | ATTIA P M, GROVER A, JIN N, et al. Closed⁃oop optimization of fast⁃charging protocols for batteries with machine learning[J]. Nature, 2020, 578(7795):397-402. |
74 | BIRKL C. Oxford battery degradation dataset 1. university of oxford, 2017[DB/OL]. https://ora.ox.ac.uk/objects/uuid%3A03ba4b01⁃cfed⁃46d3⁃9b1a⁃7d4a7bdf6fac. |
75 | KOLLMEYER P. Panasonic 18650PF Li⁃ion battery data[R]. 2018. |
76 | ZHANG H, TANG W, NA W, et al. Implementation of generative adversarial network⁃CLS combined with bidirectional long short⁃term memory for lithium⁃ion battery state prediction[J]. Journal of Energy Storage, 2020, 31:101489. |
77 | DASZYKOWSKI M, KACZMAREK K, VANDER HEYDEN Y, et al. Robust statistics in data analysis⁃ a review: basic concepts[J]. Chemometrics and Intelligent Laboratory Systems, 2007, 85(2):203-219. |
78 | PANG X, HUANG R, WEN J, et al. A lithium⁃ion battery rul prediction method considering the capacity regeneration phenomenon[J]. Energies, 2019, 12(11).. |
79 | ZHANG Y, XIONG R, HE H, et al. Long short⁃term memory recurrent neural network for remaining useful life prediction of lithium⁃ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7):5695–5705. |
80 | FAN Y, XIAO F, LI C, et al. A novel deep learning framework for state of health estimation of lithium⁃ion battery[J]. Journal of Energy Storage, 2020, 32. |
81 | XIA B, CUI D, SUN Z, et al. State of charge estimation of lithium⁃ion batteries using optimized Levenberg⁃Marquardt wavelet neural network[J]. Energy, 2018, 153:694-705. |
82 | SHU X, LI G, ZHANG Y, et al. Online diagnosis of state of health for lithium⁃ion batteries based on short⁃term charging profiles[J]. Journal of Power Sources, 2020, 471. |
83 | LONG WANG, NANNING ZHENG, CHUAN WANG. The hidden nodes of BP neutral nets and the activation functions[C] .1991 International Conference on Circuits and Systems, 1991: 77-79. |
84 | 史永胜, 马铭远, 丁恩松, 等. 改进支持向量回归的锂离子电池可用容量估计[J]. 电源技术, 2019, 43(12):1996–2000. |
SHI Y, MA M, DING E, et al. Capacity estimation of lithium ion battery based on support vector regression [J]. Chinese Journal of Power Sources, 2019, 43(12):1996-2000. | |
85 | 李嘉波, 魏孟, 叶敏, 等. 基于高斯过程回归的锂离子电池SOC估计[J]. 储能科学与技术, 2020, 9(1):131–137. |
LI J, WEI M, YE M, et al. SOC estimation of lithium⁃ion batteries based on Gauss process regression [J]. Energy Storage Science and Technology, 2020, 9(1):131-137. | |
86 | WU J, ZHANG C, CHEN Z. An online method for lithium⁃ion battery remaining useful life estimation using importance sampling and neural networks[J]. Applied Energy, 2016, 173:134-140. |
87 | ALTMAN N S. An introduction to kernel and nearest⁃neighbor nonparametric regression[J]. The American Statistician, 1992, 46(3):175-185. |
88 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[R]. 2015. |
89 | 郑雪莹, 邓晓刚, 曹玉苹. 基于能量加权高斯过程回归的锂离子电池健康状态预测[J]. 电子测量与仪器学报, 2020, 34(6):63-69. |
ZHENG X, DENG X, CAO Y. State of health prediction of lithium⁃ion batteries based on energy⁃weighted Gaussian process regression [J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(6):63-69. | |
90 | LI Y, SHENG H, CHENG Y, et al. State⁃of⁃health estimation of lithium⁃ion batteries based on semi⁃supervised transfer component analysis[J]. Applied Energy, 2020, 277:115504. |
91 | MENG J, CAI L, LUO G, et al. Lithium⁃ion battery state of health estimation with short⁃term current pulse test and support vector machine[J]. Microelectronics Reliability, 2018, 88-90:1216-1220. |
92 | 孙道明, 俞小莉. 随机放电工况下锂离子电池容量预测方法[J]. 汽车工程, 2020, 42(9):1189-1196. |
SUN D, YU X. Capacity prediction method of lithium⁃ion battery under random discharge condition[J]. Automotive Engineering, 2020, 42(9):1189–1196. | |
93 | 王竹晴, 庞晓琼, 黄蕊, 等. 基于KPCA⁃ANFIS的锂离子电池RUL预测[J]. 电子测量与仪器学报, 2018, 32(10):26–32. |
WANG Z, PANG X, HUANG R, et al. KPCA⁃ANFIS based remaining useful life prediction of lithium⁃ion battery[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(10):26-32. | |
94 | SCHÖLKOPF B, SMOLA A, K⁃RMÜLLER. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5):1299-1319. |
95 | GOU B, XU Y, FENG X. State⁃of⁃health estimation and remaining⁃useful⁃life prediction for lithium⁃ion battery using a hybrid data⁃driven method[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10):10854-10867. |
96 | GUO P, CHENG Z, YANG L. A data⁃driven remaining capacity estimation approach for lithium⁃ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412:442-450. |
97 | YANG D, ZHANG X, PAN R, et al. A novel Gaussian process regression model for state⁃of⁃health estimation of lithium⁃ion battery using charging curve[J]. Journal of Power Sources, 2018, 384:387-395. |
98 | HAWKINS D M. The problem of overfitting[J]. Journal of Chemical Information and Computer Sciences, 2004, 44(1):1-12. |
99 | BISHOP C M. Pattern recognition and machine learning[M]. Springer, 2006. |
100 | RUDERSEBASTIAN. An overview of gradient descent optimization algorithms[J]. CoRR, 2016, abs/1609.04747. |
101 | TIBSHIRANI R. Regression shrinkage and selection via the lasso: a retrospective[J]. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 2011, 73(3):273-282. |
102 | HOERL A E, KENNARD R W. Ridge regression: biased estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1):55-67. |
103 | CARUANA R, LAWRENCE S, GILES L. Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping[C] . Neural Information Processing Systems Foundation, 2001. |
104 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15:1929-1958. |
105 | JAMES G, WITTEN D, HASTIE T, et al. An introduction to statistical learning: with applications in R[M]. New York: Springer, 2013. |
[1] | Xiaocong Zhao,Shiyu Fang,Zirui Li,Jian Sun. Extraction and Application of Key Utility Term for Social Driving Interaction [J]. Automotive Engineering, 2024, 46(2): 230-240. |
[2] | Jie Hu, Haihua Qing, Min Wei, Huangzheng Geng, Xiao Zhang, Lin Chen. Research on Vehicle Diagnostic Trouble Code Decoupling Method Based on Multidimensional Association Rule [J]. Automotive Engineering, 2024, 46(1): 161-169. |
[3] | Fei Chen,Xiangdong Kong,Yuedong Sun,Xuebing Han,Languang Lu,Yuejiu Zheng,Minggao Ouyang. Progress in Simulation Technology of Lithium-ion Battery Manufacturing Process [J]. Automotive Engineering, 2023, 45(9): 1516-1529. |
[4] | Wenchao Guo,Lin Yang,Zhongwei Deng,Jilin Li,Zhixian Fan. Research on Multi-level Fault Warning Method for Lithium-ion Batteries Driven by Cloud Data [J]. Automotive Engineering, 2023, 45(9): 1677-1687. |
[5] | Yong Han,Xujie Lin,Hongwu Huang,Hongyu Cai,Jinrong Luo,Yangting Li. An Approach for Predicting Pedestrian Trajectories in Typical Car Crash Scenarios [J]. Automotive Engineering, 2023, 45(6): 1022-1030. |
[6] | Haiqiang Liang,Hongwen He,Kangwei Dai,Bo Pang,Peng Wang. Research on Lithium Ion Battery Life Prediction Method Based on Empirical Aging Model and Mechanism Model for Electric Vehicles [J]. Automotive Engineering, 2023, 45(5): 825-835. |
[7] | Jie Hu,Hao Geng,Yuanjie Li,Huangzheng Geng,Minmin Tong. Analysis of Vehicle Diagnostic Trouble Codes Based on Association Rule Mining [J]. Automotive Engineering, 2023, 45(4): 699-708. |
[8] | Yubo Lian,Heping Ling,Qingchan Ma,Qiang Ren,Bin He. Research Progress on Pulse Heating Technology of Lithium-ion Battery for Electric Vehicles [J]. Automotive Engineering, 2023, 45(2): 169-174. |
[9] | Jianhao Zhang,Xingqi Gao,Li Zhang. Micro Short Circuit Diagnosis Method of Battery Pack Based on Capacity Increment Curve and Charge Capacity Difference [J]. Automotive Engineering, 2023, 45(2): 191-198. |
[10] | Jiqing Chen,Zihan Li,Fengchong Lan,Xinping Jiang,Wei Pan,Jikai Chen. Real-Vehicle Battery Health State Estimation Based on Nonlinear Reduced-Dimensional IC Features [J]. Automotive Engineering, 2023, 45(2): 199-208. |
[11] | Gege Cui,Lü Chao,Jinghang Li,Zheyu Zhang,Guangming Xiong,Jianwei Gong. Data-Driven Personalized Scenario Risk Map Construction for Intelligent Vehicles [J]. Automotive Engineering, 2023, 45(2): 231-242. |
[12] | Fengchong Lan,Wei Pan,Jiqing Chen. Prediction of Remaining Useful Life of Real-World Vehicle Lithium-Ion Power Battery Based on Aseq2seq-PF [J]. Automotive Engineering, 2023, 45(12): 2348-2356. |
[13] | Junzhao Jiang,Wenhao Yang,Bin Peng,Ting Guo,Yekai Xu,Guozhuo Wang. Driving Range Prediction of Fuel Cell Vehicles Based on Energy Consumption Weighting Strategy [J]. Automotive Engineering, 2023, 45(12): 2357-2365. |
[14] | Zhicheng He,Zejun Xie,Kan Liu,Enlin Zhou,Qian Tang,Yuanyi Huang. Collaborative Design Optimization of Pure Electric Vehicle Drivetrain and Motor Structure Parameters [J]. Automotive Engineering, 2023, 45(11): 2113-2122. |
[15] | Yubo Lian,Heping Ling,Junbin Wang,Hua Pan,Zhao Xie. A Real-time Thermal Runaway Detection Method of Power Battery Based on Guassian Mixed Model and Hidden Markov Model [J]. Automotive Engineering, 2023, 45(1): 139-146. |