Automotive Engineering ›› 2022, Vol. 44 ›› Issue (10): 1527-1536.doi: 10.19562/j.chinasae.qcgc.2022.10.007
Special Issue: 底盘&动力学&整车性能专题2022年
Previous Articles Next Articles
Zhenhai Gao1,Wenhao Wen1,Minghong Tang1,Jian Zhang2,Guoying Chen1()
Received:
2022-04-17
Revised:
2022-05-13
Online:
2022-10-25
Published:
2022-10-21
Contact:
Guoying Chen
E-mail:cgy-011@163.com
Zhenhai Gao,Wenhao Wen,Minghong Tang,Jian Zhang,Guoying Chen. Estimation of Vehicle Motion State Based on Hybrid Neural Network[J].Automotive Engineering, 2022, 44(10): 1527-1536.
"
估计量 | 车速/(km·h-1) | 对比算法 | |||
---|---|---|---|---|---|
EKF | DNN | GRU | HNN | ||
30 | 0.240 6 | 0.087 0 | 1.104 1 | 0.019 8 | |
70 | 0.230 3 | 0.341 4 | 0.749 7 | 0.021 2 | |
120 | 2.052 8 | 0.627 0 | 2.024 6 | 0.044 9 | |
30 | 0.196 9 | 0.352 9 | 0.741 2 | 0.110 0 | |
70 | 0.940 2 | 0.299 8 | 0.500 2 | 0.279 1 | |
120 | 3.192 5 | 1.226 6 | 2.709 2 | 1.179 6 | |
30 | 1.891 7 | 0.810 8 | 2.108 6 | 0.565 8 | |
70 | 0.723 5 | 0.520 2 | 2.044 3 | 0.381 5 | |
120 | 2.917 4 | 1.709 6 | 2.434 5 | 1.504 1 |
"
估计量 | 路面 | 对比算法 | |||
---|---|---|---|---|---|
EKF | DNN | GRU | HNN | ||
0.3 | 1.060 7 | 0.504 8 | 1.437 8 | 0.030 6 | |
0.5 | 0.925 5 | 0.502 4 | 1.508 3 | 0.029 5 | |
0.85 | 1.320 7 | 0.505 5 | 1.562 1 | 0.037 4 | |
1.0 | 2.192 7 | 0.506 7 | 1.593 7 | 0.041 5 | |
0.3 | 1.518 6 | 1.127 0 | 1.755 1 | 1.064 0 | |
0.5 | 1.675 7 | 0.970 7 | 1.882 9 | 0.922 6 | |
0.85 | 2.673 2 | 0.734 0 | 2.050 8 | 0.720 4 | |
1.0 | 3.145 3 | 0.661 8 | 2.085 4 | 0.660 5 | |
0.3 | 2.208 5 | 1.407 3 | 2.328 9 | 1.133 4 | |
0.5 | 2.206 7 | 1.193 3 | 2.192 5 | 1.037 8 | |
0.85 | 2.056 1 | 1.232 0 | 2.227 2 | 1.066 7 | |
1.0 | 2.023 8 | 1.317 4 | 2.240 7 | 1.147 2 |
1 | GUO H Y, CAO D P, CHEN H, et al. Vehicle dynamic state estimation: state of the art schemes and perspectives [J]. IEEE-CAA J Automatica Sin, 2018, 5(2): 418-431. |
2 | PENDLETON S D, ANDERSEN H, DU X X, et al. Perception, planning, control, and coordination for autonomous vehicles [J]. Machines, 2017, 5(1): 54. |
3 | SINGH K B, ARAT M A, TAHERI S. Literature review and fundamental approaches for vehicle and tire state estimation[J]. Vehicle System Dynamics, 2019, 57(11): 1643-1665. |
4 | GUO H Y, CHEN H, XU F, et al. Implementation of EKF for vehicle velocities estimation on FPGA [J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3823-3835. |
5 | KATRINIOK A, ABEL D. Adaptive EKF-based vehicle state estimation with online assessment of local observability [J]. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1368-1381. |
6 | LIU J, WANG Z, ZHANG L, et al. Sideslip angle estimation of ground vehicles: a comparative study [J]. IET Control Theory & Applications, 2020, 14(20): 3490-3505. |
7 | KIM D, KIM G, CHOI S, et al. An integrated deep ensemble-unscented Kalman filter for sideslip angle estimation with sensor filtering network [J]. IEEE Access, 2021, 9: 149681-149689. |
8 | CHINDAMO D, LENZO B, GADOLA M. On the vehicle sideslip angle estimation: a literature review of methods, models, and innovations [J]. Applied Sciences, 2018, 8(3): 355. |
9 | 周卫琪, 齐翔, 陈龙, 等. 基于无迹卡尔曼滤波与遗传算法相结合的车辆状态估计 [J]. 汽车工程, 2019, 41(2): 198-205. |
ZHOU W Q, QI X, CHEN L, et al. Vehicle state estimation based on the combination of unscented Kalman filtering and genetic algorithm[J]. Automotive Engineering, 2019, 41(2): 198-205. | |
10 | SCHMIDHUBER J. Deep learning in neural networks: an overview [J]. Neural Netw, 2015, 61: 85-117. |
11 | KUUTTI S, BOWDEN R, JIN Y, et al. A survey of deep learning applications to autonomous vehicle control [J]. IEEE Transactions on ITS, 2021, 22(2): 712-733. |
12 | ROKONUZZAMAN M, MOHAJER N, NAHAVANDI S, et al. Model predictive control with learned vehicle dynamics for autonomous vehicle path tracking [J]. IEEE Access, 2021, 9: 128233-128249. |
13 | PAN Y, NIE X, LI Z, et al. Data-driven vehicle modeling of longitudinal dynamics based on a multibody model and deep neural networks [J]. Measurement, 2021, 180: 109541. |
14 | CHINDAMO D, GADOLA M. Estimation of vehicle side-slip angle using an artificial neural network [C]. 2nd International Conference on Mechanical, Aeronautical and Automotive Engineering (ICMAA 2018). 2018.10.1051/matecconf/201816602001. |
15 | TONOLI A, AMATI N, GHOSH J. A deep learning based virtual sensor for vehicle sideslip angle estimation: experimental results [C]. SAE Paper 2018-01-1089. |
16 | SPIELBERG N A, BROWN M, KAPANIA N R, et al. Neural network vehicle models for high-performance automated driving [J]. Sci Robot, 2019, 4(28): 13. |
17 | LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. |
18 | SRINIVASAN S, SA I, ZYNER A, et al. End-to-end velocity estimation for autonomous racing [J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6869-6875. |
19 | GONZALEZ L P, SANCHEZ S S, GARCIA-GUZMAN J, et al. Simultaneous estimation of vehicle roll and sideslip angles through a deep learning approach [J]. Sensors, 2020, 20(13): 18. |
20 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780. |
21 | CHO K, VAN MERRI?NBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. Proceedings of the EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing,Proceedings of the Conference, F, 2014. |
[1] | Ze Gao, Zunkang Chu, Jiasheng Shi, Fu Lin, Weixiong Rao, Haiyan Yu. Research on Fast Prediction Method of Stress Field of Automotive Parts Based on Graph Network [J]. Automotive Engineering, 2024, 46(1): 170-178. |
[2] | Weiguo Liu,Zhiyu Xiang,Rui Liu,Guodong Li,Zixu Wang. Research on End-to-End Vehicle Motion Planning Method Based on Deep Learning [J]. Automotive Engineering, 2023, 45(8): 1343-1352. |
[3] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[4] | Yanyan Chen,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. Efficient Automatic Driving Instance Segmentation Method Based on Detection [J]. Automotive Engineering, 2023, 45(4): 541-550. |
[5] | Fengchong Lan,Jikai Chen,Jiqing Chen,Xinping Jiang,Zihan Li,Wei Pan. Research on Lithium Battery Remaining Useful Life Prediction Method Driven by Real Vehicle Data [J]. Automotive Engineering, 2023, 45(2): 175-182. |
[6] | Linhui Li,Xinliang Zhang,Yifan Fu,Jing Lian,Jiaxu Ma. Research on Visible Light and Infrared Post-Fusion Detection Based on TC-YOLOv7 Algorithm [J]. Automotive Engineering, 2023, 45(12): 2280-2290. |
[7] | Xiaojun Zhang,Jingzhe Xi,Yanlei Shi,Anlu Yuan. Lightweight YOLOv7-R Algorithm for Road-Side View Target Detection [J]. Automotive Engineering, 2023, 45(10): 1833-1844. |
[8] | Jie Hu,Yuanjie Li,Hao Geng,Huangzheng Geng,Xiong Guo,Hongwei Yi. Construction of Vehicle Fault Knowledge Graph Based on Deep Learning [J]. Automotive Engineering, 2023, 45(1): 52-60. |
[9] | Jie Hu,Boyuan Xu,Zongquan Xiong,Minjie Chang,Di Guo,Lihao Xie. Cross-Domain Object Detection Algorithm Based on Multi-scale Mask Classification Domain Adaptive Network [J]. Automotive Engineering, 2022, 44(9): 1327-1338. |
[10] | Guihong Bi,Xu Xie,Zilong Cai,Zhao Luo,Chenpeng Chen,Xin Zhao. Capacity Estimation of Lithium-ion Battery Based on Deep Learning Under Dynamic Conditions [J]. Automotive Engineering, 2022, 44(6): 868-878. |
[11] | Dafang Wang,Jingdong Du,Jiang Cao,Mei Zhang,Gang Zhao. Research on Style Transfer Network for Autonomous Driving Data Generation [J]. Automotive Engineering, 2022, 44(5): 684-690. |
[12] | Jinghua Guo,Zhifei He,Yugong Luo,Keqiang Li. Vehicle Cut-in Trajectory Prediction Based on Deep Learning in a Human-machine Mixed Driving Environment [J]. Automotive Engineering, 2022, 44(2): 153-160. |
[13] | Yuande Jiang,Bing Zhu,Xiangmo Zhao,Jian Zhao,Bingbing Zheng. Modeling of Traffic Vehicle Interaction for Autonomous Vehicle Testing [J]. Automotive Engineering, 2022, 44(12): 1825-1833. |
[14] | Datong Qin,Kang Wang,Jihao Feng,Yonggang Liu,Kun Cheng,Yu Xia. Road Slope Estimation Based on Unscented Kalman Filtering and Gated Recurrent Unit [J]. Automotive Engineering, 2022, 44(10): 1547-1555. |
[15] | Shaowei Zhang,Dawei Zhu,Guangzhao Zhai. Prediction on Seat’s Anti-whiplash-injury Performance Based on Deep Learning [J]. Automotive Engineering, 2022, 44(10): 1600-1608. |