Automotive Engineering ›› 2025, Vol. 47 ›› Issue (8): 1437-1447.doi: 10.19562/j.chinasae.qcgc.2025.08.001
Mingyue Ma,Zelin Miao,Weiqing Wang,Guangming Zhao(
),Changjun Wang(
)
Received:2024-10-29
Revised:2025-02-24
Online:2025-08-25
Published:2025-08-18
Contact:
Guangming Zhao,Changjun Wang
E-mail:zgmbright@163.com;wcj121@sina.com
Mingyue Ma,Zelin Miao,Weiqing Wang,Guangming Zhao,Changjun Wang. Research on Construction of Autonomous Driving Simulation Scenario Based on the Traffic Rule Model[J].Automotive Engineering, 2025, 47(8): 1437-1447.
"
| 序号 | 违规项目 | 违规测试用例数量 | 违规率 | 违规情形 |
|---|---|---|---|---|
| 1 | MTL_TrafficRegulation84.01 | 10 | 50% | 通过施工作业路段,未减速行驶。 |
| 2 | MTL_TrafficRegulation59.09 | 10 | 50% | 通过事故发生路段,未减速慢行。 |
| 3 | MTL_Trafficlaw42.02 | 5 | 100% | 夜间道路行驶,未减速。 |
| 4 | MTL_Trafficlaw42.03 | 5 | 100% | 危险路段行驶,未减速。 |
| 5 | MTL_TrafficRegulation80.02 | 5 | 100% | 稳定行驶过程中与前车安全距离不足。 |
| 6 | MTL_TrafficRegulation53.04 | 5 | 100% | 在车道减少的路段遇到前方机动车停车排队等候,长时间未能通过,且未能发出接管请求。 |
| 7 | MTL_TrafficRegulation53.05 | 5 | 100% | 在车道减少的路段遇到前方机动车缓慢行驶,长时间未能通过,且未能发出接管请求。 |
| 8 | MTL_Trafficlaw53.04 | 5 | 100% | 后方有正在执行紧急任务的警车加速靠近,长时间未能让行,且未能发出接管请求。 |
| 9 | MTL_Trafficlaw53.05 | 5 | 100% | 后方有正在执行紧急任务的消防车加速靠近,长时间未能让行,且未能发出接管请求。 |
| 10 | MTL_Trafficlaw53.06 | 5 | 100% | 后方有正在执行紧急任务的救护车加速靠近,长时间未能让行,且未能发出接管请求。 |
| 11 | MTL_Trafficlaw53.07 | 5 | 100% | 后方有正在执行紧急任务的工程救险车加速靠近,长时间未能让行,且未能发出接管请求。 |
| 12 | MTL_Trafficlaw38.11 | 5 | 100% | 遇交通警察发出要求-靠边停车信号,未能停车,且未发出接管请求。 |
| 总计 | 12 | 70 |
"
| 序号 | 违规项目 | 测试用例数量 | 违规率 | 违规情形 |
|---|---|---|---|---|
| 1 | MTL_Trafficlaw42.02 | 10 | 100% | 夜间道路行驶,未减速。 |
| 2 | MTL_Trafficlaw42.04 | 5 | 100% | 遇有沙尘、冰雹、雨、雪、雾、结冰等气象条件行驶时,未减速。 |
| 3 | MTL_TrafficRegulation59.09 | 5 | 100% | 通过事故发生路段,未减速慢行。 |
| 4 | MTL_TrafficRegulation84.01 | 5 | 100% | 通过施工作业路段,未减速行驶。 |
| 5 | MTL_Trafficlaw42.03 | 5 | 100% | 车辆平均行驶速度超过最高限速标线表明的速度。 |
| 6 | MTL_TrafficRegulation81.01 | 5 | 100% | 雾天在高速公路上行驶且能见度低于50 m,未按照规定速度行驶,且未能发出接管请求。 |
| 7 | MTL_TrafficRegulation81.02 | 5 | 100% | 雨天在高速公路上行驶且能见度低于50 m,未按照规定速度行驶,且未能发出接管请求。 |
| 8 | MTL_TrafficRegulation81.03 | 5 | 100% | 雾天在高速公路上行驶且能见度低于100 m,未按照规定速度行驶,且未能发出接管请求。 |
| 9 | MTL_TrafficRegulation81.04 | 5 | 100% | 雨天在高速公路上行驶且能见度低于100 m,未按照规定速度行驶,且未能发出接管请求。 |
| 10 | MTL_Trafficlaw53.04 | 10 | 100% | 后方有正在执行紧急任务的警车加速靠近,长时间未能让行,且未能发出接管请求。 |
| 11 | MTL_Trafficlaw53.05 | 10 | 100% | 后方有正在执行紧急任务的消防车加速靠近,长时间未能让行,且未能发出接管请求。 |
| 12 | MTL_Trafficlaw53.06 | 10 | 100% | 后方有正在执行紧急任务的救护车加速靠近,长时间未能让行,且未能发出接管请求。 |
| 13 | MTL_Trafficlaw53.07 | 10 | 100% | 后方有正在执行紧急任务的工程救险车加速靠近,长时间未能让行,且未能发出接管请求。 |
| 14 | MTL_TrafficRegulation44.03 | 10 | 50% | 车辆向左变道,未按照规定让行左侧相临车道后方车辆。 |
| 15 | MTL_TrafficRegulation44.09 | 15 | 50% | 车辆向右变道,未按照规定让行右侧相临车道后方车辆。 |
| 16 | MTL_TrafficRegulation38.05 | 10 | 100% | 车辆遇黄灯且已过停止线,停在路口中间,未按照规定继续行驶。 |
| 17 | MTL_Trafficlaw38.11 | 10 | 100% | 遇交通警察发出要求-靠边停车信号,未能停车,且未发出接管请求。 |
| 总计 | 17 | 135 |
| [1] | 北京市自动驾驶车辆道路测试报告(2023年)[R/OL].北京智能车联产业创新中心,2024. http://www.mzone.site/index.php/index/index/cid/2/sid/21.html. |
| Road test report of self-driving vehicles in Beijing (2023)[R/OL]. Beijing Intelligent Vehicle Association Industry Innovation Center,2024. http://www.mzone.site/index.php/index/index/cid/2/sid/21.html. | |
| [2] | 上海市智能网联汽车发展报告(2023年度)[R/OL].上海市交通委员会,2024. https://jtw.sh.gov.cn/zxzfxx/20240205/7aa0c16cc00e42cb9b3311b564dc8ffe.html. |
| Report on the development of intelligent connected vehicles in Shanghai(2023) [R/OL]. Shanghai Municipal Transportation Commission, 2024. https://jtw.sh.gov.cn/zxzfxx/20240205/7aa0c16cc00e42cb9b3311b564dc8ffe.html. | |
| [3] | BUECHEL M, HINZ G, RUEHL F, et al. Ontology-based traffic scene modeling, traffic regulations dependent situational awareness and decision-making for automated vehicles[C]. 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017: 1471-1476. |
| [4] | 工业和信息化部 公安部 住房和城乡建设部 交通运输部关于开展智能网联汽车准入和上路通行试点工作的通知[EB/OL]. (2023-11-17)[2024-10-10]. https://ythxxfb.miit.gov.cn/ythzxfwpt/hlwmh/tzgg/xzxk/clsczr/art/2023/art_ae314a1df30e4ba1a49bd4ffa10186f6.html. |
| Notice of MIIT, MPS, MOHURD and MOT on carrying out pilot work on access and road traffic of intelligent connected vehicles[EB/OL]. (2023-11-17)[2024-10-10]. https://ythxxfb.miit.gov.cn/ythzxfwpt/hlwmh/tzgg/xzxk/clsczr/art/2023/art_ae314a1df30e4ba1a49bd4ffa10186f6.html. | |
| [5] | BENCH-CAPON T J M, ROBINSON G O, ROUTEN T W, et al. Logic programming for large scale applications in law: a formalisation of supplementary benefit legislation[C]. Proceedings of the lst International Conference on Artificial Intelligence and Law, 1987: 190-198. |
| [6] | RIZALDI A, ALTHOFF M. Formalising traffic rules for accountability of autonomous vehicles [C]. 2015 IEEE 18th International Conference on Intelligent Transportation Systems. IEEE, 2015:1658-1665. |
| [7] | MAIERHOFER S, RETTINGER A K, MAYER E C, et al. Formalization of intersection traffic rules in temporal logic[C]. 2020 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2020: 752-759. |
| [8] | YU W, ZHAO C, WANG H, et al. Online legal driving behavior monitoring for self-driving vehicles[J]. Nature Communications, 2024, 15(1). |
| [9] | BECKER C, BREWER J C, YOUNT L. Safety of the intended functionality of lane-centering and lane-changing maneuvers of a generic level 3 highway chauffeur system[R]. National Highway Traffic Safety Administration, 2020. |
| [10] | JACOBO A, NOBUYUKI U, KUNIO Y, et al. Development of a safety assurance process for autonomous vehicles in Japan[C]. Proceedings of ESV Conference, 2019. |
| [11] | ZHAO D, HUANG X, PENG H, et al. Accelerated evaluation of automated vehicles in car-following maneuvers[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(3):733-744. |
| [12] | FENG S, FENG Y, YU C, et al. Testing scenario library generation for connected and automated vehicles, part I: methodology[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(3):1573-1582. |
| [13] | SUN J, ZHOU H, XI H, et al. Adaptive design of experiments for safety evaluation of automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(9):14497-14508. |
| [14] | DING W, CHEN B, LI B, et al. Multimodal safety-critical scenarios generation for decision-making algorithms evaluation[J]. IEEE Robotics and Automation Letters, 2021,6(2):1551-1558. |
| [15] | XIAO Y, ZHANG X, XU X, et al. Deep neural networks with Koopman operators for modeling and control of autonomous vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2022, 8(1): 135-146. |
| [16] | ISO. Road vehicles-scenario attributes and categorization: ISO 34504 [S]. 2018. |
| [17] | European Commission. Commission Implementing Regulation (EU) 2022/1426 of 5 August 2022 laying down rules for the application of Regulation (EU) 2019/2144 of the European Parliament and of the Council as regards uniform procedures and technical specifications for the type-approval of the automated driving system (ADS) of fully automated vehicles[Z]. Off. J. Eur. Union, 2022, 65(L221):1-64. |
| [18] | United Nations Economic Commission for Europe Geneva CH Regulation Addendum. New assessment/test method for automated driving (NATM) guidelines for validating automated driving system (ADS)[Z]. 2022. |
| [19] | United Nations Economic Commission for Europe Geneva CH Regulation Addendum. UN regulation No 157-Uniform provisions concerning the approval of vehicles with regards to automated lane keeping systems [Z]. 2022. |
| [20] | LI Y, WU S, et al. Adaptive mining of failure scenarios for autonomous driving systems based on multi-population genetic algorithm[C]. 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Island, Korea, Republic of, 2024: 2458-2464. |
| [21] | WU S, WANG H, et al. A new SOTIF scenario hierarchy and its critical test case generation based on potential risk assessment[C]. 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing, China, 2021:399-409. |
| [22] | CHANG C, et al. MetaScenario: a framework for driving scenario data description, storage and indexing[J]. IEEE Transactions on Intelligent Vehicles, 2023,8(2): 1156-1175. |
| [23] | ISO. Road vehicles-engineering framework and process of scenario-based safety evaluation: ISO 34502 [S]. 2018. |
| [24] | GRUBER T R. A translation approach to portable ontology specifications[J]. Knowledge Acquisition,1993,5:199-220. |
| [25] | WAN L, WANG C, et al. Semantic consistency and correctness verification of digital traffic rules[J]. Engineering, 2024, 33:47-62. |
| [26] | 全国汽车标准化技术委员会. 汽车驾驶自动化分级: GB/T 40429—2021[S/OL]. [2024-10-10]. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=4754CB1B7AD798F288C52D |
| [1] | Bing Zhu,Rui Tang,Jian Zhao,Peixing Zhang,Wenxu Li,Jiasheng Li,Xuefeng Xu. Virtual Simulation Testing Method for Intelligent Vehicle Based on Large Language Model [J]. Automotive Engineering, 2025, 47(4): 587-597. |
| [2] | Bing Zhu,Tianxin Fan,Jian Zhao,Peixing Zhang,Dongjian Song,Yue Xue,Wenbo Zhao. Generation Method for Anthropomorphic Continuous Interactive Test Scenarios of Automated Driving [J]. Automotive Engineering, 2024, 46(9): 1600-1607. |
| [3] | Peixing Zhang,Kongjian Qin,Bing Zhu,Jian Zhao,Tianxin Fan,Wenbo Zhao. Comprehensive Evaluation Method for Automated Vehicle in Multiple Virtual Logical Scenarios [J]. Automotive Engineering, 2024, 46(3): 375-382. |
| [4] | Hang Sun,Yuran Li,Linlin Zhang,Yang Zhai,Zhenyu Chen,Chen Chen. Scenario Complexity Calculation Model of Real Road Test Based on Operational Design Condition [J]. Automotive Engineering, 2024, 46(11): 1983-1992. |
| [5] | Tianfei Ma,Bo Li,Bing Zhu,Jian Zhao. Ultrasonic Radar Modeling of Automatic Parking System Considering Atmospheric Conditions Effect [J]. Automotive Engineering, 2023, 45(9): 1646-1654. |
| [6] | Xinzheng Wu,Xingyu Xing,Lihao Liu,Yong Shen,Junyi Chen. Testing and Analysis of the Robustness of Decision-Making and Planning Systems Based on Fault Injection [J]. Automotive Engineering, 2023, 45(8): 1428-1437. |
| [7] | Yanli Ma,Jun Lu,Jieyu Zhu,Xiaoxue Han. Take-over Performance Prediction Under Different Cognitive Loads of Non-driving Tasks in Highly Automated Driving [J]. Automotive Engineering, 2023, 45(12): 2330-2337. |
| [8] | Hang Sun,Zhijun Li,Linlin Zhang,Zhenyu Chen,Shilong Li. Research on the Test and Evaluation Technique of Real Roads for Automated Driving Vehicles Based on OEDR and ODC [J]. Automotive Engineering, 2022, 44(6): 842-850. |
| [9] | Peixing Zhang,Bin Qiu,Bing Zhu,Jian Zhao,Yuhang Sun,Tianxin Fan. Study on Parallel Accelerated Testing Method for Automated Driving System [J]. Automotive Engineering, 2022, 44(2): 208-214. |
| [10] | Guangquan Lu,Facheng Chen,Penghui Li,Junda Zhai,Haitian Tan,Pengyun Zhao. Effect of Drivers’ Acceptance Level of Car⁃following Risk on the Takeover Performance [J]. Automotive Engineering, 2021, 43(6): 808-814. |
| [11] | Lin Qingfeng, Wang Zhaojie, Lu Guangquan. Takeover Safety Evaluation Model for Level 3 Automated Vehicles [J]. Automotive Engineering, 2019, 41(11): 1258-1264. |
|
||