[1] VICTOR B, GEORGE A K. Review of current trends in research and applications of sandwich structures[J]. Composites Part B: Engineering,2018,142:221-240. [2] HOSUR M V, MOHAMMED A A, ZAINUDDIN S, et al. Impact performance of nanophased foam core sandwich composites[J]. Materials Science and Engineering: A,2008,498(1-2):100-109. [3] 武晓东,夏凡,吴晓青.不同纤维面层对泡沫夹层复合材料低速冲击性能的影响[J].纤维复合材料,2010,27(4):8-11. [4] KALANTARI M, NAMI M R, KADIVAR M H. Optimization of composite sandwich panel against impact using genetic algorithm[J]. International Journal of Impact Engineering,2010,37(6):599-604. [5] 谭年富,陈秀华,法洋洋,等.泡沫夹层复合材料的低速冲击损伤及剩余强度的数值模拟[J].机械工程材料,2012,36(8):89-94. [6] 韩庆,王广博,钟小平,等.基于遗传算法的复合材料泡沫夹芯板铺层优化设计[J].航空工程进展,2013,4(2):182-185. [7] SZYNISZEWSKI S, SMITH B H, HAJJAR J F, et al. Local buckling strength of steel foam sandwich panels[J]. Thin-Walled Structures,2012,59:11-19. [8] WANG J, WAAS A, WANG H. Experimental study on the low-velocity impact behavior of foam-core sandwich panels[J]. Composite Structures,2013,96(4):298-311. [9] ZHANG G, WANG B, MA L, et al. Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels[J]. Composite Structures,2014,108:304-310. [10] 万玉敏,张发,竺铝涛.泡沫夹层复合材料与复合材料层合板低速冲击性能的比较[J].机械工程材料,2014,38(7):90-94. [11] YANG B, WANG Z Q, ZHOU L M, et al. Study on the low-velocity impact response and CAI behavior of foam-filled sandwich panels with hybrid facesheet[J]. Composite Structures, 2015,132:1129-1140. [12] LIU C, ZHANG Y X, YE L. High velocity impact responses of sandwich panels with metal fibre laminate skins and aluminium foam core[J]. International Journal of Impact Engineering,2017,100:139-153. [13] LIU C, ZHANG Y X, LI J. Impact responses of sandwich panels with fibre metal laminate skins and aluminium foam core[J]. Composite Structures,2017,182:183-190. [14] SUN G, WANG E, WANG H, et al. Low-velocity impact behaviour of sandwich panels with homogeneous and stepwise graded foam cores[J]. Materials & Design,2018,160:1117-1136. |