[1] FAYYAZBAKHSH A, PIROUZFAR V. Investigating the influence of additives-fuel on diesel engine performance and emissions: analytical modeling and experimental validation[J]. Fuel, 2016, 171(1): 167-177. [2] WU G, KUZNETSOV A V, JASPER W J, et al. Distribution characteristics of exhaust gases and soot particles in a wall-flow ceramics filter[J]. Journal of Aerosol Science, 2011, 42(7): 447-461. [3] TORREGROSA A J, SERRANO J R, ARNAU F J, et al. A fluid dynamic model for unsteady compressible flow in wall-flow diesel particulate filters[J]. Energy, 2011, 36(1): 671-684. [4] SARLI D , BENEDETTO D, ALMERINDA V. Modeling and simulation of soot combustion dynamics in a catalytic diesel particulate filter[J]. Chemical Engineering Science, 2015, 137: 69-78. [5] HARVEL G D, CHANG J S, TUNG A, et al. Three dimension deposited soot distribution measurement in silicon carbide diesel particulate filters by dynamic neutron radiography [C]. SAE Paper 2011-01-0599. [6] ZHANG X, TENNISON P J, SCHRAM T, et al. 3D numerical study of pressure loss characteristics and soot leakage through a damaged DPF[J]. SAE International Journal of Fuels & Lubricants, 2009, 2(1): 590-604. [7] WANG Y J, WONG V, SAPPOK A, et al. The sensitivity of DPF performance to the spatial distribution of ash inside DPF inlet channels [C]. SAE Paper 2013-01-0158. [8] SAPPOK A, WONG V. Ash effects on diesel particulate filter pressure drop sensitivity to soot and implications for regeneration frequency and DPF control[C]. SAE Paper 2010-01-0811. [9] MYCHAL T, ATSUSHI K, RYUJI K, et al. Development of improved SCR on DPF design for future tighter regulations and reduced system packaging[C]. SAE Paper 2018-01-0344. [10] GEORGE S, ACHIM H. Next generation cordierite thin wall DPF for improved pressure drop and lifetime pressure drop solution[C]. SAE Paper 2016-01-0940. [11] 朱亚永, 赵昌普, 王耀辉, 等. 柴油机DPF流场压降及微粒沉积特性数值模拟[J]. 内燃机学报, 2017, 35(6): 62-71. ZHU Yayong, ZHAO Changpu, WANG Yaohui, et al. Numerical simulation of pressure drop and particle deposition characteristics of DPF flow field in diesel engine[J]. Journal of Internal Combustion Engine, 2017, 35(6): 62-71. [12] 李志军, 侯普辉, 焦鹏昊, 等. DPF孔道内流场及微粒沉积特性的数值模拟[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(10): 914-920. LI Zhijun, HOU Puhui, JIAO Penghao, et al. Numerical simulation of flow field and particle deposition characteristics in DPF pores[J]. Journal of Tianjin University(Natural Science and Engineering Technology Edition), 2015, 48(10): 914-920. [13] 龚金科, 江俊豪, 陈韬, 等. 柴油机壁流式过滤体灰烬滤饼沉积流动阻力特性[J]. 内燃机学报, 2014, 32(6): 58-64. GONG Jinke, JIANG Junhao, CHEN Tao, et al. Flow resistance characteristics of ash filter cake deposition in wall-flow filter of diesel engine[J]. Journal of Internal Combustion Engine, 2014, 32(6): 58-64. [14] LIU B, CHENG X, LIU J, et al. Experimental investigation of injection strategies on particle emission characteristics of Partially-premixed low temperature combustion mode[J]. Applied Thermal Engineering, 2018, 141: 90-100. [15] 沈颖刚, 吕誉, 陈春林, 等. 非对称孔结构载体对DPF及柴油机性能的影响研究[J]. 内燃机工程, 2018, 39(6): 31-38. SHEN Yinggang, LU Yu, CHEN Chunlin, et al. Research on the influence of asymmetric pore structure carrier on DPF and diesel engine performance[J]. Internal Combustion Engine Engineering, 2018, 39(6): 31-38. [16] ZHANG X G, TENNISON P, RUONA W. 3D numerical study of pressure loss characteristics and filtration efficiency through a frontal unplugged DPF[J]. SAE International Journal of Fuels & Lubricants, 2010, 3(1): 177-193. [17] 张俊, 帅石金, 肖建华. 灰分对柴油机颗粒捕集器性能影响研究综述[J]. 内燃机工程, 2018, 39(6): 11-23. ZHANG Jun, SHUAI Shijin, XIAO Jianhua. A review of the effects of ash on the performance of diesel particulate traps[J]. Internal Combustion Engine Engineering, 2018, 39(6): 11-23. [18] 蒲云飞, 孟忠伟. DPF内颗粒沉积特性分析[J]. 小型内燃机与车辆技术, 2018, 47(5): 92-96. PU Yunfei, MENG Zhongwei. Analysis of particle deposition characteristics in DPF[J]. Small Internal Combustion Engine and Vehicle Technology, 2018, 47(5): 92-96. |