汽车工程 ›› 2022, Vol. 44 ›› Issue (4): 638-648.doi: 10.19562/j.chinasae.qcgc.2022.04.018
所属专题: 新能源汽车技术-电驱动&能量管理2022年
• • 上一篇
收稿日期:
2021-12-23
修回日期:
2022-02-20
出版日期:
2022-04-25
发布日期:
2022-04-22
通讯作者:
蔡蔚
E-mail:william_cai88@163.com
基金资助:
William Cai1(),Maotong Yang1,Yang Liu2,Daohui Li3
Received:
2021-12-23
Revised:
2022-02-20
Online:
2022-04-25
Published:
2022-04-22
Contact:
William Cai
E-mail:william_cai88@163.com
摘要:
SiC MOSFET器件的集成化、高频化和高效化需求,对功率模块封装形式和工艺提出了更高的要求。本文中总结了近年来封装形式的结构优化和技术创新,包括键合式功率模块的金属键合线长度、宽度和并联数量对寄生电感的影响,直接覆铜(DBC)的陶瓷基板中陶瓷层的面积和高度对寄生电容的影响,以及采用叠层换流技术优化寄生参数等成果;综述了双面散热结构的缓冲层厚度和形状对散热指标和应力与形变的影响;汇总了功率模块常见失效机理和解决措施,为模块的安全使用提供参考。最后探讨了先进烧结银技术的要求和关键问题,并展望了烧结封装技术和材料的发展方向。
蔡蔚,杨茂通,刘洋,李道会. SiC功率模块封装技术及展望[J]. 汽车工程, 2022, 44(4): 638-648.
William Cai,Maotong Yang,Yang Liu,Daohui Li. SiC Power Module Packaging Technologies and Prospects[J]. Automotive Engineering, 2022, 44(4): 638-648.
1 | 李刚.碳化硅MOSFET器件建模及一体化驱动技术研究[D].哈尔滨:哈尔滨工业大学, 2016. |
LI G. Research on silicon carbide MOSFET device modeling and integrated drive technology[D]. Harbin: Harbin Institute of Technology, 2016. | |
2 | 袁刚.碳化硅功率器件在交流伺服驱动器中的应用研究[D].北京:冶金自动化研究设计院, 2018. |
YUAN G. Application research of silicon carbide power devices | |
in AC servo drives[D]. Beijing:Metallurgical Automation Research and Design Institute, 2018. | |
3 | WANG J, CHUNG H S, LI R T. Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance[J]. IEEE Transactions on Power Electronics, 2012, 28(1): 573-590. |
4 | CHEN Z, BOROYEVICH D, BURGOS R. Experimental parametric study of the parasitic inductance influence on MOSFET switching characteristics[C]. The 2010 International Power Electronics Conference-ECCE ASIA-. IEEE, 2010: 164-169. |
5 | MCPHERSON B.Parametric power electronic module design techniques for rapid analysis,prototyping and transition to manufacturing[C]. IEEE 3D-PEIM,2016:1-14. |
6 | CASADY J, PALA V,BRUNT E V, et al.Ultra-low (1.25mW) on-resistance 900V SiC 62mm half-bridge power modules using new 10m2 SiC MOSFETS[C]. IEEE PCIM,2016:1-8. |
7 | SHE X, DATTA R, TODOROVIC M H, et al.High performance silicon carbide power block for industry applications[J].IEEE Transactions on Industry Applications,2017,53(4):3738-3747. |
8 | BUETOW S,HERZER R, KOENIGSMANN G, et al.High power,high frequency SiC-MOSFET system without standing performance, power density and reliability[C]. IEEE ISPSD,2017:419-422. |
9 | KOENIGSMANN G,HERZER R,BUETOW S, et al. High power high frequency gate driver for SiC MOSFET modules[C]. IEEE PCIM Europe,2016:1-7. |
10 | Infineon. Infineon CoolSiCTIM semiconductor solutions are the next essential step towards an energy smart world [EB/OL]. [2017-10-20]. |
11 | Fraunhofer. Full SiC double sided busbar power module low ind-uctive and high temperature power module concept [EB/OL].[2017-10-20]. |
12 | KICIN S, PETTERSSON S, BIANDA E, et al.Full SiC half-bridge module for high frequency and high temperature operation[C]. IEEE ECTC,2015:950-956. |
13 | KICIN S, TRAUB F, HARTMANN S, et al.A new concept of a high-current power module allowing paralleling of many SiC devices assembled exploiting conventional packaging technologies[C]. IEEE.ISPSD,2016:467-470. |
14 | HOENE E, OSTMANN A, LAI B T, et al. Ultra-low-inductance power module for fast switching semiconductors[C]. IEEE.PCIM,2013:198-205. |
15 | TANIMOTO S, MATSUI K.High junction temperature and low parasitic inductance power module technology for compact power conversion systems[J]. IEEE Transactions on Electron Devices,2015,62(2):258-269. |
16 | CHA Kyoung-Soo, KIM Dong-Min, JUNG Young-Hoon, et al. Wound field synchronous motor with hybrid circuit for neighborhood electric vehicle traction improving fuel economy[J]. Ap-plied Energy,2020,263(5). |
17 | SEAL S, GLOVER M D, MANTOOTH H A.3-D wire bondless switching cell using flip-chip-bonded silicon carbide power devices[J]. IEEE Transactions on Power Electronics, 2018,33(10): 8553-8564. |
18 | KASKO I, BERBERICH S E, GROSS M, et al. High efficient approach to utilize SiC MOSFET potential in power modules[C]. 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD). IEEE, 2017: 259-262. |
19 | TEMPLE V, WALDRON J, AZOTEA J, et al. High frequency SiC majority carrier modules[C]. Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. VDE, 2015: 1-7. |
20 | CHANG H R, BU J, KONG G, et al. 300A 650V 70 μm thin IGBTs with double-sided cooling[C]. 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs. IEEE, 2011: 320-323. |
21 | WEIDNER K, KASPAR M, SELIGER N. Planar interconnect technology for power module system integration[C]. 2012 7th International Conference on Integrated Power Electronics Systems (CIPS). IEEE, 2012: 1-5. |
22 | CHEN Z, YAO Y, BOROYEVICH D, et al. An ultra-fast sic phase-leg-mocule in modified hybrid packaging structure[C]. IEEE Energy Conversion Congress and Exposition. Pittsburgh: IEEE,2014:2880-2886. |
23 | 黄志召, 李宇雄, 陈材, 等. 基于新型混合封装的高速低感SiC半桥模块[J]. 电力电子技术,2017(12). |
HUANG Z Z, LI Y X, CHEN C, et al. High-speed and low-ind-uctance SiC half-bridge module based on a new hybrid package[J]. Power Electronics Technology, 2017(12). | |
24 | GAO Mengchao, HAN Ronggang, ZHAO Ge, et al. The research on IGBT chip for press -pack[J]. Research & Progress of SSE,2016,38(2): 132-135. |
25 | CHEN H, CAO W, BORDIGNON P, et al. Design and testing of the world's first single-level press-pack IGBT based submodule for MMC VSC HVDC applications[C]. 2015 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2015: 3359-3366. |
26 | TOKUYAMA T, NAKATSU K, NISHIHARA A, et al. A novel direct water and double-sided cooled power module for hev/ev inverter[C]. 2014 International Conference on Electronics Packaging (ICEP). IEEE, 2014: 6-9. |
27 | HERBSOMMER J A, NOQUIL J, LOPEZ O, et al. Innovative 3D integration of power MOSFETs for synchronous buck converters[C]. 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2011: 1273-1274. |
28 | YAO C, WANG Z, LI W, et al. Comparison study of common-mode noise and thermal performance for lateral wire-bonded and vertically integrated high power diode modules[J]. IEEE Transactions on Power Electronics, 2018, 33(12): 10572-10582. |
29 | LEE H, SMET V, TUMMALA R. A review of SiC power module packaging technologies: challenges, advances, and emerging issues[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 8(1): 239-255. |
30 | KAZIMIEREZUK M K.高频特性器件[M].钟智勇, 唐晓莉, 张怀武, 译.北京: 电子工业出版社, 2012. |
KAZIMIEREZUK M K. High-frequency characteristic devices[M]. ZHONG Z Z, TANG X L, ZHANG H W,Translated.Beijing: Publishing House of Electronics Industry, 2012. | |
31 | 曾正, 李晓玲, 林超彪, 等. 功率模块封装的电–热–力多目标优化设计[J].中国电机工程学报,2019,39(17):5161-5171,5297. |
ZENG Z, LI X L, LIN C B, et al. Multi-objective optimization design of electric-thermal-force for power module packaging[J].Proceedings of the Chinese Society of Electrical Engineering,2019,39(17):5161-5171,5297. | |
32 | 牛利刚,王玉林,滕鹤松,等.叠层双面冷却功率模块封装性能研究[J].电子元件与材料, 2018, 37(12): 60-65. |
NIU L G, WANG Y L, TENG H S, et al. Research on pack-aging performance of laminated double-sided cooling power mod-ule[J].Electronic Components & Materials, 2018, 37(12): 60-65. | |
33 | 杨宁,詹洪桂,谢健兴,等.大功率模块双面散热封装热设计与特性研究[J].中国照明电器,2021(2):6-13,24. |
YANG N, ZHAN H G, XIE J X, et al. Research on thermal design and characteristics of double-sided heat dissipating pac-kage for high power module[J].China Lighting,2021(2):6-13,24. | |
34 | 陆国权,刘文,梅云辉.双面散热SiC MOSFET模块的封装结构强度设计[J].电工电能新技术,2018,37(10):32-38. |
LU G Q, LIU Y, MEI Y H. The package structure strength desi-gn of double-sided heat dissipation SiC MOSFET module[J]. New Technology of Electrical Engineering and Energy,2018,37(10):32-38. | |
35 | NAKATSU K, NISHIHARA A, SASAKI K, et al. A novel direct water and double-sided cooled power module and a compact inverter for electrified vehicles[C]. 2013 15th European Conference on Power Electronics and Applications (EPE). IEEE, 2013: 1-6. |
36 | LIANG Z, NING P, WANG F. Development of advanced all-SiC power modules[J]. IEEE Transactions on Power Electronics, 2013, 29(5): 2289-2295. |
37 | VAGNON E, CRÉBIER J C, AVENAS Y, et al. Study and realization of a low force 3D press-pack power module[C]. 2008 IEEE Power Electronics Specialists Conference. IEEE, 2008: 1048-1054. |
38 | VAGNON E, JEANNIN P O, CREBIER J C, et al. A bus-bar-like power module based on three-dimensional power-chip-on-chip hybrid integration[J]. IEEE Transactions on Industry Applications, 2010, 46(5): 2046-2055. |
39 | 李晓玲,曾正,陈昊,等.SiC、Si、混合功率模块封装对比评估与失效分析[J].中国电机工程学报,2018,38(16):4823-4835,4988. |
LI X L, ZENG Z, CHEN H, et al. Comparative evaluation and | |
failure analysis of SiC, Si, and hybrid power module packages[J]. Proceedings of the Chinese Society of Electrical Engineering, 2018, 38(16): 4823-4835,4988. |
[1] | 刘首彤,黄沛丰,白中浩. 锂离子电池机械滥用失效机理及仿真模型研究进展[J]. 汽车工程, 2022, 44(4): 465-475. |
|