汽车工程 ›› 2023, Vol. 45 ›› Issue (5): 786-795.doi: 10.19562/j.chinasae.qcgc.2023.05.008

所属专题: 智能网联汽车技术专题-感知&HMI&测评2023年

• • 上一篇    下一篇

交通图像大气加雾模型设计与评价

黄鹤1,2,李战一1,2,杨澜3(),王会峰1,高涛3,陈婷3   

  1. 1.长安大学电子与控制工程学院,西安  710064
    2.西安市智慧高速公路信息融合与控制重点实验室,西安  710064
    3.长安大学信息工程学院,西安  710064
  • 收稿日期:2022-09-16 修回日期:2022-12-09 出版日期:2023-05-25 发布日期:2023-05-26
  • 通讯作者: 杨澜 E-mail:lanyang@chd.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB2501200);国家自然科学基金面上项目(52172379);陕西省重点研发计划项目(2022GY-300);西安市智慧高速公路信息融合与控制重点实验室(长安大学)开放基金项目(300102323502);中央高校基本科研业务费专项资金重点科研平台建设计划水平提升项目(300102323501)

Design and Evaluation of Atmospheric Fogging Model for Traffic Image

He Huang1,2,Zhanyi Li1,2,Lan Yang3(),Huifeng Wang1,Tao Gao3,Ting Chen3   

  1. 1.School of Electronics and Control Engineering,Chang'an University,Xi’an  710064
    2.Xi 'an Key Laboratory of Intelligent Expressway Information Fusion and Control,Xi’an  710064
    3.School of Information Engineering,Chang'an University,Xi’an  710064
  • Received:2022-09-16 Revised:2022-12-09 Online:2023-05-25 Published:2023-05-26
  • Contact: Lan Yang E-mail:lanyang@chd.edu.cn

摘要:

针对数字孪生过程中,交通雾霾图像的采集受天气限制,数据库获取困难导致样本不足等问题,提出了一种新的大气加雾模型,并用于扩展不同浓度的交通雾霾图像数据库。首先,结合暗特征原理,求解大气光值,并提出了一种基于区域方差的大气光补偿方法来获取大气光估计;其次,利用颜色衰减先验估计场景深度,求解初始透射率;然后构建了图像大气加雾模型,将计算的大气光估计与大气加雾透射率代入模型,并利用雾霾系数调整加雾浓度;最后设计了多组交通视频加雾实验并进行评价。实验结果表明,提出的算法能随着预置雾霾系数增大,使得图像主观上明显趋于模糊,客观指标随之逐步发生变化,图像降质规律与真实的含雾场景基本一致,可用于扩充雾霾数据集,具有很好的有效性和实用性。利用不同去雾算法评价对比加雾图像可知,复原图像效果与针对实际图像的去雾效果基本无异,进一步反向验证了加雾模型的有效性。

关键词: 图像处理, 图像加雾, 数字孪生, 大气加雾模型

Abstract:

For the problems of weather restriction and insufficient samples due to the difficulty of database acquisition for the collection of traffic haze images in the process of digital twinning, a new atmospheric fogging model is proposed to expand the database of traffic haze images with different concentrations. Firstly, the atmospheric light value is calculated based on the principle of dark feature, and the estimation of atmospheric light is obtained by using the atmospheric light compensation method based on variance fluctuation. Secondly, the color attenuation prior is used to estimate the scene depth, and to solve the initial transmittance. Then, an image atmospheric fogging model is constructed, and the calculated atmospheric light estimation and atmospheric fogging transmission are substituted into the model, and the fogging density is adjusted by the haze coefficient. Finally, several traffic video fogging experiments are designed and evaluated. Experimental results show that with the increase of preset haze coefficient, the proposed algorithm can make the image tend to blur subjectively, and the objective index gradually change accordingly. The image quality degradation law is basically consistent with the real scene containing fog, which can be used to expand haze data set, with good effectiveness and practicability. By evaluating and comparing the fogging images with different defogging algorithms, it can be seen that the effect of the restored image is basically the same as the defogging effect of the actual image, further verifying the effectiveness of the fogging model.

Key words: image processing, image fogging, digital twin, fogging model