1 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2005: 886-893.
|
2 |
LOW D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
|
3 |
PLATT J C. Sequential minimal optimization: a fast algorithm for training support vector machines[EB/OL].[2022-08-23]. http://www.dmi.dk/fileadmin/user_upload/Rapporter/TR/1998/tr98-14.pdf.
|
4 |
FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[C]. Proceedings of the 2nd European Conference on Computational Learning Theory,1995: 23-27.
|
5 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
|
6 |
CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 1483-1498.
|
7 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
8 |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]. Computer Visio-ECCV 2016,2016:21-37.
|
9 |
ZHOU X, WANG D, KRÄHENBÜHL P. Objects as points[EB/OL].[2022-08-23]. http://arxiv.org/abs/1904.07850.
|
10 |
HU Y, HE H, XU C, et al. Exposure: a white-box photo post-processing framework[J]. ACM Transactions on Graphics, 2018, 37(2):26.1-26.17.
|
11 |
刘建伟, 谢浩杰, 罗雄麟. 生成对抗网络在各领域应用研究进展[J]. 自动化学报, 2020, 46(12): 2500-2536.
|
|
LIU J W, XIE H J, LUO X L. Research progress on application of generative adversarial networks in variousfields[J]. Acta Automatica Sinica, 2020, 46(12): 2500-2536.
|
12 |
GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020:1780-1789.
|
13 |
LIU W, REN G, YU R, et al. Image-adaptive YOLO for object detection in adverse weather conditions[C]. Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, 2021:1-12.
|
14 |
MCCARTNEY E J. Optics of the atmosphere: scattering by molecules and particles[J]. Optica Acta International Journal of Optics, 1977, 24(7):779.
|
15 |
HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(12):2341.
|
16 |
TAN R T. Visibility in bad weather from a single image[C]. Proceedings of IEEE Conference on Computer Vision & Pattern Recognition (CVPR), 2008: 23-28.
|
17 |
ZHU Q, MAI J, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11):3522-3533.
|
18 |
CAI B, XU X, JIA K, et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11):5187-5198.
|
19 |
LI B, PENG X, WANG Z, et al. AOD-Net: all-in-one dehazing network[C]. Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV), 2017: 4780-4788.
|
20 |
李永福, 崔恒奇, 朱浩,等. 一种基于改进AOD-Net的航拍图像去雾算法[J]. 自动化学报, 2022, 48(6): 1543-1559.
|
|
LI Y F, CUI H Q, ZHU H, et al. A defogging algorithm for aerial image with improved AOD-Net[J]. Acta Automatica Sinica, 2022, 48(6): 1543-1559.
|
21 |
LIU X, MA Y, SHI Z, et al. GridDehazeNet: attention-based multi-scale network for image dehazing[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 7314-7323.
|
22 |
CHEN D, HE M, FAN Q, et al. Gated context aggregation network for image dehazing and deraining[C]. Proceedings of 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), 2019: 1375-1383.
|
23 |
CHEN Y, LI W, SAKARIDIS C, et al. Domain adaptive faster R-CNN for object detection in the wild[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3339-3348.
|
24 |
ZHANG S, TUO H, HU J, et al. Domain adaptive YOLO for one-stage cross-domain detection[EB/OL].[2022-08-23]. https://arxiv.org/abs/2106.13939v1.
|
25 |
钟魁松, 冯治国, 张振博, 等. 雾天道路下智能车视觉图像实时快速去雾研究[J]. 汽车技术, 2022(5): 27-33.
|
|
ZHONG K S, FENG Z G, ZHANG Z B, et al. Study on real-time and rapid de-fogging for intelligent vehicles on foggy roads[J]. Automobile Technology, 2022(5): 27-33.
|
26 |
LI B, REN W, FU D, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2019, 28(1): 492-505.
|
27 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL].[2022-08-23]. https://arxiv.org/abs/1511.07122.
|
28 |
JOHNSON J, ALAHI A, FEI-FEI L. Perceptual losses for real-time style transfer and super-resolution[C]. European Conference on Computer Vision, 2016: 694-711.
|
29 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2022-08-23].https://arxiv.org/abs/1409.1556.
|
30 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Proceedings of IEEE Conference on Computer Vision & Pattern Recognition (CVPR), 2016: 770-778.
|
31 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss fordense object detection[J]. Proceedings of the IEEE International Conference on Computer Vision,2017: 2980-2988.
|
32 |
SAKARIDIS C, DAI D, GOOL L V. Semantic foggy scene understanding with synthetic data[J]. International Journal of Computer Vision, 2018, 126(9): 973-992.
|
33 |
ZHANG S, BENENSON R, SCHIELE B. CityPersons: a diverse dataset for pedestrian detection[C]. IEEE 2017: 4457-4465.
|
34 |
CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]. 2016 IEEE Conference on Computer Vision & Pattern Recognition (CVPR), 2016: 3213-3223.
|
35 |
GE Z, LIU S T, WANG F, et al. Yolox: exceeding yolo series in 2021[EB/OL]. [2022-08-23]. https://doi.org/10.48550/arXiv.2107.08430.
|