1 |
SCHRODER E, BRAUN S, MAHLISCH M, et al. Feature map transformation for multi⁃sensor fusion in object detection networks for autonomous driving[C]. Science and Information Conference, 2019:118-131.
|
2 |
CHOI J, CHUN D, KIM H, et al. Gaussian YOLOv3:an accurate and fast object detector using localization uncertainty for autonomous driving[C]. International Conference on Computer Vision, 2019:502-511.
|
3 |
ZHANG L, LIN L, LIANG X, et al. Is faster R⁃CNN doing well for pedestrian detection?[C]. European Conference on Computer Vision, 2016:443-457.
|
4 |
REN S , HE K , GIRSHICK R , et al. Faster R⁃CNN:towards real⁃time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
|
5 |
DOLLA P. Pedestrian detection:a benchmark[C]. Proceedings / CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009:304-311.
|
6 |
MAO J, XIAO T, JIANG Y, et al. What can help pedestrian detection[C]. Computer Vision and Pattern Recognition, 2017:6034-6043.
|
7 |
李晓飞,许庆,熊辉,等. 基于候选区域选择及深度网络模型的骑车人识别[J]. 清华大学学报(自然科学版), 2017, 57(5):491-496.
|
|
LI X F, XU Q, XIONG H, et al. Cyclist identification based on candidate area selection and deep network model [J]. Journal of Tsinghua University (Natural Science edition), 2017, 57(5):491-496.
|
8 |
陈文强,熊辉,李克强,等.基于深度神经网络的行人及骑车人联合检测[J].汽车工程,2018,40(6):726-732,725.
|
|
CHEN W Q, XIONG H, LI K Q, et al. Joint detection of pedestrians and cyclists based on deep neural network [J]. Automotive Engineering, 2018,40(6):726-732,725.
|
9 |
LIU C, GUO Y, LI S, et al. ACF based region proposal extraction for YOLOv3 network towards high⁃performance cyclist detection in high resolution images[J]. Sensors, 2019, 19(12).
|
10 |
REDMON J, DIWALA S K, GIRSHICK R, et al. You only look once:unified, real⁃time object detection[C]. Computer Vision and Pattern Recognition, 2016:779-788.
|
11 |
GIRSHICK R. Fast R⁃CNN[C]. International Journal of Computer Vision, 2015:1440-1448.
|
12 |
UIJLINGS J, SANDE K E, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171.
|
13 |
LIU W , ANGUELOV D , ERHAN D , et al. SSD:single shot multibox detector[C]. European Conference on Computer Vision, 2016:21-37.
|
14 |
SIMONYAN K , ZISSERMAN A. Very deep convolutional networks for large⁃scale image recognition[J]. Computer Science, 2014.
|
15 |
LIU W , LIAO S , REN W , et al. High⁃level semantic feature detection:a new perspective for pedestrian detection[J]. Computer Vision and Pattern Recognition, 2019.
|
16 |
FELZENSZWALB P F, MCALLESTER D, RAMANAN D, et al. A discriminatively trained, multiscale, deformable part model[C]. Computer Vision and Pattern Recognition, 2008:1-8.
|
17 |
XIE S , TU Z. Holistically⁃nested edge detection[J]. Interna⁃tional Journal of Computer Vision, 2017, 125(5):3-18.
|
18 |
HUANG G , LIU Z , LAURENS V D M , et al. Densely connected convolutional networks[J]. IEEE Computer Society, 2017:2261-2269.
|
19 |
CAO G, XIE X, YANG W, et al. Feature⁃fused SSD:fast detection for small objects[J]. arXiv:Computer Vision and Pattern Recognition, 2018.
|
20 |
BRAZIL G, YIN X, LIU X, et al. Illuminating pedestrians via simultaneous detection and segmentation[C]. International Conference on Computer Vision, 2017:4960-4969.
|
21 |
OUYANG W, ZHOU H, LI H, et al. Jointly learning deep features, deformable parts, occlusion and classification for pedestrian detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(8):1874-1887.
|
22 |
DALAL N, TRIGGS B. Histograms of oriented gradients for hu⁃man detection[C]. Computer Vision and Pattern Recognition, 2005:886-893.
|
23 |
DOLLAR P, APPEL R, BELONGIE S,et al. Fast feature pyramids for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8):1532-1545.
|
24 |
NAM W, DOLLAR P, HAN J H, et al. Local decorrelation for improved pedestrian detection[C]. Neural Information Processing Systems, 2014:424-432.
|
25 |
ZHANG S , YANG J , SCHIELE B. Occluded pedestrian detection through guided attention in CNNs[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018:6995-7003.
|
26 |
OUYANG W, WANG X. Joint deep learning for pedestrian detection[C]. International Conference on Computer Vision, 2013:2056-2063.
|
27 |
TIAN Y, LUO P, WANG X, et al. Pedestrian detection aided by deep learning semantic tasks[C]. Computer Vision and Pattern Recognition, 2015:5079-5087.
|