SOC?OCV曲线是锂离子电池状态估计的基础。针对传统HPPC测试法在非测试点不能描述电池非线性特性和小电流恒流放电法得到的OCV曲线精度不足等问题,提出一种基于粒子群优化算法的OCV曲线优化方法。该方法将小电流恒流放电得到的OCV曲线进行平移,以平移曲线在测试点与HPPC测试得到的OCV值之间的误差和最小为优化目标,对OCV曲线进行优化。然后,以优化OCV曲线为基础对2阶RC模型的模型参数进行辨识和模型端电压估计。结果表明:与HPPC法相比,基于优化OCV曲线的模型精度具有更高的全局精度,在低SOC区域的模型精度提高了一倍。最后,基于优化的OCV曲线和辨识的模型参数,设计扩展卡尔曼滤波算法对SOC进行全SOC区域估计。试验结果表明,基于优化OCV曲线和扩展卡尔曼滤波算法的SOC估计误差在全SOC区域上都能保持在2%以内。