汽车工程 ›› 2024, Vol. 46 ›› Issue (1): 128-138.doi: 10.19562/j.chinasae.qcgc.2024.01.014

• 精选论文 • 上一篇    下一篇

电动汽车BMS从控板热分析及散热优化

原江鑫1,2,何莉萍1,2(),李耀东3,李罡2   

  1. 1.湖南大学,整车先进设计制造技术全国重点实验室,长沙 410082
    2.湖南大学机械与运载工程学院,长沙 410082
    3.湖南中南智能装备有限公司,长沙 410116
  • 收稿日期:2023-05-31 修回日期:2023-06-27 出版日期:2024-01-25 发布日期:2024-01-23
  • 通讯作者: 何莉萍 E-mail:lphe@hnu.edu.cn
  • 基金资助:
    *湖南省重点专项项目(2019GK2191)资助。

Thermal Analysis and Optimization Design of a BMS Slave Unit for Electric Vehicles

Jiangxin Yuan1,2,Liping He1,2(),Yaodong Li3,Gang Li2   

  1. 1.Hunan University,State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicles,Changsha  410082
    2.College of Mechanical and Vehicle Engineering,Hunan University,Changsha  410082
    3.Hunan Central South Intelligent Equipment Co. ,Ltd. ,Changsha  410116
  • Received:2023-05-31 Revised:2023-06-27 Online:2024-01-25 Published:2024-01-23
  • Contact: Liping He E-mail:lphe@hnu.edu.cn

摘要:

针对电动汽车电池管理系统从控板服役过程中因温度过高和不均影响整车动力性、安全性问题,本文基于CFD理论,采用Icepak软件建立并验证了某商用BMS从控板热分析模型。首次在车载服役条件下,基于热分析模型开展了温度场分析和热均匀性优化研究。BMS从控板热仿真分析表明,均衡模块及供电模块因局部积热温度均超过BMS的设计温度限值60 ℃,整个BMS从控板最大温差为21.0 ℃。为此,进一步开展了BMS从控板散热路径分析,并通过改变均衡电阻间距、布局、PCB基材以及增设导热硅胶垫进行散热优化设计。提高了BMS从控板的散热能力,使BMS从控板的最高温度控制在设计规定值60 ℃以下,同时整个电路板的温差降为6.9 ℃,提高了BMS从控板在实际车载服役条件下的安全性和可靠性,可望为BMS从控板热设计与优化提供理论方法。

关键词: 新能源电动汽车, BMS从控板, 热分析, 散热优化

Abstract:

For the problem of high temperature and uneven distribution affecting the power and safety of the electric vehicle during the battery management systems slave control board's service, a commercial BMS slave control board thermal analysis model is built and verified using the CFD theory and Icepak software. For the first time under vehicle service conditions, temperature field analysis and thermal uniformity optimization research are carried out based on the thermal analysis model. The BMS slave control board thermal simulation analysis shows that the balancing and power supply modules exceed the BMS's design temperature limit of 60 °C due to local heat accumulation, with the maximum temperature difference of the entire BMS slave control board being 21.0 ℃. A heat dissipation path analysis of the BMS slave control board is further carried out, and heat dissipation optimization design is realized by altering the distance, layout of the balancing resistor, PCB substrate and adding thermal pads. By increasing the heat dissipation capacity of the BMS slave control board, the highest temperature of the BMS slave control board can be controlled below the design limit of 60 ℃, and the temperature difference of the entire circuit board can be reduced to 6.9 ℃, which enhances the safety and reliability of the BMS slave control board under actual vehicle service conditions, providing theoretical methods for the thermal design and optimization of the BMS slave control board.

Key words: new energy electric vehicles, battery management system slave control board, thermal analysis, heat dissipation optimization