1 |
帅石金, 王志, 马骁, 等. 碳中和背景下内燃机低碳和零碳技术路径及关键技术[J]. 汽车安全与节能学报, 2021, 12(4): 417-439.
|
|
SHUAI S J, WANG Z, MA X, et al. Low- and zero-carbon technology pathways and key technologies for internal combustion engines in the context of carbon neutrality[J]. Journal of Automotive Safety and Energy Conservation, 2021, 12(4): 417-439.
|
2 |
WANG Chenxu, JIN Shaoye, DENG Jun, et al. An innovative Argon/Miller power cycle for internal combustion engine: thermodynamic analysis of its efficiency and power density[J]. Automotive Innovation, 2023, 6(1): 76-88.
|
3 |
ZHAO Z Q, LIU W, LI F B, et al. Distributed gas ignition using injection strategy for high efficiency and clean combustion under lean condition[J]. Automotive Innovation, 2020, 3(4): 366-373.
|
4 |
WU Zhijun, ZHAO Wenbo, LI Zhilong, et al. A review of engine fuel injection studies using synchrotron radiation X-ray imaging[J]. Automotive Innovation, 2019, 2(2): 79-92.
|
5 |
CORATELLA C, PARRY L, LI Yanfei, et al. Experimental investigation of the rail pressure fluctuations correlated with fuel properties and injection settings[J]. Automotive Innovation, 2021, 4(2): 215-226.
|
6 |
SHUAI Shijin, MA Xiao, LI Yanfei, et al. Recent progress in automotive gasoline direct injection engine technology[J]. Automotive Innovation, 2018, 1(2): 95-113.
|
7 |
中国汽车工程学会. 节能与新能源汽车技术路线图 2.0[M]. 北京: 机械工业出版社, 2020.
|
|
Automotive Engineering Society of China. Energy-saving and new energy vehicle technology roadmap 2.0 [M]. Beijing: Machinery Industry Press, 2020.
|
8 |
HUA J, SONG Y, ZHOU L, et al. Operation strategy optimization of lean combustion using turbulent jet ignition at different engine loads[J]. Applied Energy, 2021, 302: 117586.
|
9 |
XU Z, ZHANG Y, DI H, et al. Combustion variation control strategy with thermal efficiency optimization for lean combustion in spark-ignition engines[J]. Applied Energy, 2019, 251: 113329.
|
10 |
XIE K, YU S, GAO T, et al. Investigation of multi-pole spark ignition on flame kernel development and in engine operation[C]. ASME 2016 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers Digital Collection, 2016.
|
11 |
蔡文远, 徐焕祥, 马帅营, 等. 采用高能点火的均质稀薄燃烧汽油机试验[J]. 内燃机学报, 2020, 38(4): 298-303.
|
|
CAI W Y, XU H X, MA S Y, et al. Test of a homogeneous thin-burning gasoline engine with high-energy ignition[J]. Journal of Internal Combustion Engine, 2020, 38(4): 298-303.
|
12 |
COOPER A, HARRINGTON A, BASSETT M, et al. Knock mitigation benefits achieved through the application of passive MAHLE jet ignition enabling increased output under stoichiometric operation: 2021-01-0477[R]. Warrendale, PA: SAE International, 2021.
|
13 |
BYCHKOV V, PETCHENKO A, AKKERMAN V, et al. Theory and modeling of accelerating flames in tubes[J]. Physical Review E, 2005, 72(4): 046307.
|
14 |
ZHOU H, MENG S, HAN Z. Combustion characteristics and misfire mechanism of a passive pre-chamber direct-injection gasoline engine[J]. Fuel, 2023, 352: 129067.
|
15 |
ZHAO D, PEI Y, AN Y, et al. Evaluation of the turbulent hot jet flame characteristics for achieving high thermal efficiency of hybrid engine[J]. Applied Thermal Engineering, 2024, 236: 121611.
|
16 |
ZHOU L, ZHONG L, LIU Z, et al. Toward highly-efficient combustion of ammonia–hydrogen engine: prechamber turbulent jet ignition[J]. Fuel, 2023, 352: 129009.
|
17 |
ZHU S, AKEHURST S, LEWIS A, et al. A review of the pre-chamber ignition system applied on future low-carbon spark ignition engines[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111872.
|
18 |
ATIS C A A, AYELE Y, STUECKEN T, et al. Effect of pre-chamber scavenging strategy on EGR tolerance and thermal efficiency of pre-chamber turbulent jet ignition systems[J]. International Journal of Engine Research, 2023, 24(5): 1938-1960.
|
19 |
TROMBLEY G, TOULSON E. A fuel-focused review of pre-chamber initiated combustion[J]. Energy Conversion and Management, 2023, 298: 117765.
|
20 |
NOGUCHI M, SANDA S, NAKAMURA N. Development of Toyota lean burn engine[J]. SAE Transactions, 1976: 2358-2373.
|
21 |
BRANDSTETTER W. The volkswagen lean burn PC-engine concept[J]. SAE Transactions, 1980, 89: 1804-1821.
|
22 |
ADAMS T G. Torch ignition for combustion control of lean mixtures: 790440[R]. Warrendale, PA: SAE International, 1979.
|
23 |
SENS M, BINDER E. Pre-chamber ignition as a key technology for future powertrain fleets[J]. MTZ Worldwide, 2019, 80(2): 44-51.
|
24 |
ATTARD W P, TOULSON E, HUISJEN A, et al. Spark ignition and pre-chamber turbulent jet ignition combustion visualization: 2012-01-0823[R]. Warrendale, PA: SAE International, 2012.
|
25 |
TOULSON E, SCHOCK H J, ATTARD W P. A review of pre-chamber initiated jet ignition combustion systems: 2010-01-2263[R]. Warrendale, PA: SAE International, 2010.
|
26 |
PETERS N, BUNCE M, BLAXILL H. The impact of engine displacement on efficiency loss pathways in a highly dilute jet ignition engine: 2019-01-0330[R]. Warrendale, PA: SAE International, 2019.
|
27 |
BUNCE M, BLAXILL H. Sub-200 g/kWh BSFC on a light duty gasoline engine: 2016-01-0709[R]. Warrendale, PA: SAE International, 2016.
|
28 |
SERRANO D, ZACCARDI J M, MÜLLER C, et al. Ultra-lean pre-chamber gasoline engine for future hybrid powertrains[J]. SAE International Journal of Advances and Current Practices in Mobility, 2019, 2(2): 607-622.
|
29 |
施佳叶, 王金秋, 邓俊, 等. 基于两级高能点火和被动预燃室的高压缩比汽油机燃烧及排放特性研究[J]. 汽车工程, 2021, 43(9): 1300-1307.
|
|
SHI J Y, WANG J Q, DENG J, et al. Combustion and emission characteristics of a high compression ratio gasoline engine based on two-stage high energy ignition and passive PC[J]. Automotive Engineering, 2021, 43(9): 1300-1307.
|
30 |
吴坚, 陈嘉雯, 杜家坤, 等. 稀燃条件下主动预燃室式直喷汽油机燃烧和排放特性研究[J]. 内燃机工程, 2021, 42(3): 55-60.
|
|
WU J, CHEN J W, DU J K, et al. Combustion and emission characteristics of an active PC direct injection gasoline engine under lean combustion conditions[J]. Internal Combustion Engine Engineering, 2021, 42(3): 55-60.
|
31 |
DUAN W, HUANG Z, CHEN H, et al. Effects of passive pre-chamber jet ignition on combustion and emission at gasoline engine[J]. Advances in Mechanical Engineering, 2021, 13(12): 16878140211067148.
|
32 |
江枭枭, 杜家坤, 陈泓, 等. 预燃室射流点火对汽油机性能影响研究[J]. 机械科学与技术, 2022, 41(12): 1900-1906.
|
|
JIANG X X, DU J K, CHEN H, et al. Effects of PC jet ignition on the performance of gasoline engines[J]. Mechanical Science and Technology, 2022, 41(12): 1900-1906.
|
33 |
JAMROZIK A, TUTAK W, KOCISZEWSKI A, et al. Numerical simulation of two-stage combustion in SI engine with prechamber[J]. Applied Mathematical Modelling, 2013, 37(5): 2961-2982.
|
34 |
BUNCE M, BLAXILL H, KULATILAKA W, et al. The effects of turbulent jet characteristics on engine performance using a pre-chamber combustor: 2014-01-1195[R]. Warrendale, PA: SAE International, 2014.
|
35 |
ANTOLINI J, SEMENTA P, TORNATORE C, et al. Effect of passive pre-chamber orifice diameter on the methane combustion process in an optically accessible SI engine[J]. Fuel, 2023, 341: 126990.
|