汽车工程 ›› 2024, Vol. 46 ›› Issue (11): 2039-2045.doi: 10.19562/j.chinasae.qcgc.2024.11.010

• • 上一篇    下一篇

基于证据深度学习的CAN网络入侵检测框架

石琴1,2,3,李志伟1,2,3,程腾1,2,3(),张强1,2,3,4,王文冲4   

  1. 1.安徽省自动驾驶汽车安全技术安徽省重点实验室,合肥 230009
    2.安徽省智慧交通车路协同工程研究中心,合肥 230000
    3.合肥工业大学汽车与交通工程学院,合肥 230000
    4.奇瑞汽车股份有限公司,芜湖 241000
  • 收稿日期:2024-04-30 修回日期:2024-06-06 出版日期:2024-11-25 发布日期:2024-11-22
  • 通讯作者: 程腾 E-mail:cht616@hfut.edu.cn
  • 基金资助:
    安徽省自然科学基金(2208085MF171);中央高校基本科研业务费专项基金(JZ2023YQTD0073);安徽省重点研究与开发计划项目(202304A05020087);北京市自然科学基金(7232222)

Intrusion Detection Framework for CAN Networks Based on Evidence Deep Learning

Qin Shi1,2,3,Zhiwei Li1,2,3,Teng Cheng1,2,3(),Qiang Zhang1,2,3,4,Wenchong Wang4   

  1. 1.Key Laboratory for Automated Vehicle Safety Technology of Anhui Province,Hefei University of Technology,Hefei 230009
    2.Engineering Research Center for Intelligent Transportation and Cooperative Vehicle-Infrastructure of Anhui Province,Hefei 230000
    3.School of Automotive and Transportation Engineering,Hefei University of Technology,Hefei 230000
    4.Chery Automobile Co. ,Ltd. ,Wuhu 241000
  • Received:2024-04-30 Revised:2024-06-06 Online:2024-11-25 Published:2024-11-22
  • Contact: Teng Cheng E-mail:cht616@hfut.edu.cn

摘要:

随着移动通信技术在智能自动驾驶系统中的持续发展,保障车载通信数据的安全已成为交通系统安全的一个重要环节,面对黑客可能通过CAN总线网络远程操控车辆的威胁,现有网络框架虽能检测已知攻击,但在识别未知攻击时表现不佳。为此,本研究提出一种融合证据深度学习的检测框架,该框架由数据预处理模块、数据分析模块和攻击检测模块组成。预处理模块通过独立热编码技术,以提升数据质量和适应性;数据分析模块通过生成对抗网络(GAN)技术增强该框架的泛化能力并模拟攻击场景;攻击检测模块应用了证据深度学习,提高了框架在应对未知攻击时的不确定性处理能力。该框架在开源汽车黑客数据集和基于奇瑞EXEED RX车型自主构建的数据集上进行了测试。实验结果表明,该框架在检测未知攻击时,相比于传统的基于softmax的分类网络综合性能提高了24.5%。

关键词: 入侵检测, 证据深度学习, 不确定度, 损失函数

Abstract:

With the continuous development of mobile communication technologies in intelligent autonomous driving systems, securing vehicular communication data has become pivotal for transportation safety. Faced with threats of hackers remotely manipulating vehicles through the CAN bus network, existing frameworks can detect known attacks but falter in identifying location-based attacks. A detection framework integrating evidence-based deep learning is proposed in this paper, comprising data preprocessing, analysis, and attack detection modules. The preprocessing module employs independent hot encoding to enhance data quality and adaptability. The analysis module utilizes Generative Adversarial Networks (GANs) to bolster the framework's generalization and simulate attack scenarios. The attack detection module harnesses evidence-based deep learning to enhance the framework's capability in handling uncertainties from unknown attacks.The framework is tested on an open-source car hacking dataset and a dataset constructed based on the Chery EXEED RX model. The test results show that the framework improves the overall performance by 24.5% in detecting unknown attacks compared to traditional classification probability-based networks.

Key words: intrusion detection, evidence deep learning, uncertainty, loss function