汽车工程 ›› 2025, Vol. 47 ›› Issue (12): 2277-2288.doi: 10.19562/j.chinasae.qcgc.2025.12.001

• •    下一篇

飞行汽车运行核心支撑技术综述

何忱远1,郭轶龙1,朱冠宇2,张洲宇1(),蔡英凤3,王海1,陈龙3   

  1. 1.江苏大学汽车与交通工程学院,镇江 212013
    2.西交利物浦大学人工智能与先进计算机学院,苏州 215123
    3.江苏大学汽车工程研究院,镇江 212013
  • 收稿日期:2025-06-16 修回日期:2025-09-26 出版日期:2025-12-25 发布日期:2025-12-19
  • 通讯作者: 张洲宇 E-mail:zhouyu.zhang@ujs.edu.cn
  • 基金资助:
    国家自然科学基金(62201229, 62503202, 52225212)、第十届中国科协青年托举人才项目(YESS20240254)、江苏省自然科学基金(BK20220516)、北京市航空智能遥感装备工程技术研究中心开放基金(AIRSE202411)、江苏省高等学校基础科学(自然科学)研究面上项目(22KJB510002)、汽车测控与安全四川省重点实验室开放课题(QCCK2025-002)和江苏大学高级人才启动基金(21JDG063)资助。

A Review of Core Support Technologies for Flying Car System Operation

Chenyuan He1,Yilong Guo1,Guanyu Zhu2,Zhouyu Zhang1(),Yingfeng Cai3,Hai Wang1,Long Chen3   

  1. 1.School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013
    2.School of Artificial Intelligence and Advanced Computing,Xi’an Jiaotong-Liverpool University,Suzhou 215123
    3.Automotive Engineering Research Institute,Jiangsu University,Zhenjiang 212013
  • Received:2025-06-16 Revised:2025-09-26 Online:2025-12-25 Published:2025-12-19
  • Contact: Zhouyu Zhang E-mail:zhouyu.zhang@ujs.edu.cn

摘要:

飞行汽车能有效拓展交通系统的立体化维度,为缓解地面拥堵与拓展出行空间提供创新解决思路。近年来,我国积极推动飞行汽车发展,政策支持持续加强,企业研发加速推进。在此背景下,飞行汽车相关研究逐年增多,但多数集中于飞控系统、能源系统或单一路径规划方法的技术突破,缺乏面向整机运行过程的综合视角,以及对子系统协同关系的深入分析。为弥补这一不足,本文从飞行汽车运行核心支撑技术角度出发,围绕飞行汽车在实际运行中所面临的安全性、能效性与决策复杂性问题,构建了由底层故障容错与安全保障、中层能量管理与功率分配、顶层路径规划与自主决策组成的三级协同架构。系统综述了各层关键技术与相互依赖关系,并梳理典型研究进展与工程方案。本文旨在为飞行汽车实现规模化、安全化运行提供理论支撑与系统参考。

关键词: 飞行汽车, 三级协同架构, 故障容错机制, 能量管理系统, 路径规划决策

Abstract:

Flying cars can effectively expand the dimensionality of transportation systems, offering innovative solutions to alleviate ground traffic congestion and broaden spatial mobility options. In recent years, China has actively promoted the development of flying cars, with increasing policy support and accelerated technological progress from enterprises. Against this backdrop, related research has grown steadily; however, most studies remain focused on specific modules such as flight control systems, energy systems, or individual path planning algorithms. A comprehensive perspective on the overall operational process and the coordination among subsystems is still lacking. To address this gap, In this paper, from the perspective of core enabling technologies for system-level operation, focusing on the challenges of safety, energy efficiency, and decision-making complexity in real-world flying car operations, a three-layer collaborative framework is proposed, consisting of bottom-layer fault tolerance and safety assurance; middle-layer energy management and power allocation; and top-layer path planning and autonomous decision-making. The key technologies and interdependencies within each layer are systematically reviewed, along with representative research progress and engineering practice. This work aims to provide theoretical insights and systematic references to support the safe and scalable deployment of flying car systems.

Key words: flying car, three-level coordination architecture, fault tolerance mechanism, energy management system, path planning decision-making