汽车工程 ›› 2025, Vol. 47 ›› Issue (6): 1095-1102.doi: 10.19562/j.chinasae.qcgc.2025.06.008

• • 上一篇    

电动汽车侧柱碰安全性虚拟仿真研究

汪俊1,马骋浩2,申宗玹2,邢伯斌2,夏勇2()   

  1. 1.中国汽车工程研究院股份有限公司,重庆 401122
    2.清华大学,智能绿色车辆与交通全国重点实验室,北京 100084
  • 收稿日期:2024-10-29 修回日期:2025-02-13 出版日期:2025-06-25 发布日期:2025-06-20
  • 通讯作者: 夏勇 E-mail:xiayong@tsinghua.edu.cn
  • 基金资助:
    第二十七届中国科协年会学术论文。国家自然科学基金(52172405)

Virtual Simulation Research on Crash Safety of Electric Vehicles Under Side Pole Impact

Jun Wang1,Chenghao Ma2,Zongxuan Shen2,Bobin Xing2,Yong Xia2()   

  1. 1.China Automotive Engineering Research Institute,Chongqing 401122
    2.Tsinghua University,National Key Laboratory of Intelligent Green Vehicles and Transportation,Beijing 100084
  • Received:2024-10-29 Revised:2025-02-13 Online:2025-06-25 Published:2025-06-20
  • Contact: Yong Xia E-mail:xiayong@tsinghua.edu.cn

摘要:

已有的侧柱碰事故统计结果表明,传统燃油车和电动汽车的事故形式接近,但考虑到电池包碰撞挤压失效风险,电动汽车侧柱碰研究应充分考虑复杂碰撞工况,将壁障物类型、几何尺寸、碰撞角度、碰撞位置和碰撞速度等因素引入安全性评价。本研究采用有限元仿真开展某款电动汽车侧柱碰安全性虚拟评价研究。通过正交试验设计,提取了不同碰撞位置的整车力学响应和车身姿态,识别了电池包侵入量和电芯变形量与碰撞速度的高关联性。分析了碰撞位置、碰撞角度对车辆旋转行为的影响以及由此产生的侵入量变化,并得到了进一步仿真验证。电池包横梁作为主要横向传力路径,提升了电池包侧向结构刚度,显著降低了侧柱碰侵入量。后续的电动车安全性评价应考虑撞击点处车身结构刚度和车辆的旋转行为后开展测试。

关键词: 电动汽车, 电池包, 碰撞安全性, 侧面柱碰撞, 有限元仿真

Abstract:

The existing statistical results of side pole collision accidents reveal that the accident forms of electric vehicles (EVs) and internal-combustion engine vehicles are similar. However, considering the risk of battery pack collision and compression failure, the research on side pole collision of EVs should fully consider complex collision conditions and include safety evaluation factors such as obstacle type, geometric size, impact angle, impact location and speed. The finite element simulation is used in this study to conduct a virtual evaluation of the safety of a certain electric vehicle’s side pole collision. An orthogonal design of experiment is carried out to extract the mechanical response and body posture of the vehicle at different collision positions. The high correlation between collision speed and battery pack intrusion and cell deformation is identified. Impact location and impact angle collectively determine rotational behavior of EVs and resultant intrusion, which is further verified by simulation. As the main lateral force transmission path, the lateral beam of the battery pack enhances the lateral structural stiffness of the battery pack and significantly reduces intrusion. Further investigation of crash safety of EVs should take structural stiffness and rotational behaviors into consideration.

Key words: electric vehicle, lithium-ion battery pack, crash safety, side pole impact, finite element simulation