汽车工程 ›› 2025, Vol. 47 ›› Issue (9): 1721-1730.doi: 10.19562/j.chinasae.qcgc.2025.09.008

• • 上一篇    

十字路口视觉障碍下车辆-VRUs碰撞风险量化评估方法

韩勇1,2(),张佳乐1,2,潘迪1,2,吴贺3,徐莉4   

  1. 1.厦门理工学院机械与汽车工程学院,厦门 361024
    2.福建省客车先进设计与制造重点实验室,厦门 361024
    3.厦门大学萨本栋微纳米科学技术研究院,厦门 361005
    4.江铃汽车股份有限公司,南昌 330052
  • 收稿日期:2025-02-25 修回日期:2025-03-31 出版日期:2025-09-25 发布日期:2025-09-19
  • 通讯作者: 韩勇 E-mail:Yonghan@xmut.edu.cn
  • 基金资助:
    国家自然科学基金(51775466);福建省自然科学基金重点项目(2024J02031);厦门市自然科学基金(3502Z20227223)

Quantitative Assessment of Vehicle-VRUs Collision Risk at Intersection with Visual Obstacle

Yong Han1,2(),Jiale Zhang1,2,Di Pan1,2,He Wu3,Li Xu4   

  1. 1.School of Mechanical and Automotive Engineering,Xiamen University of Technology,Xiamen 361024
    2.Fujian Provincial Key Laboratory of Advanced Design and Manufacturing of Coaches,Xiamen 361024
    3.Pen -Tung Sah Institute of Micro-Nano Science and Technology,Xiamen University,Xiamen 361005
    4.Jiangling Motors Co. ,Ltd. ,Nanchang 330052
  • Received:2025-02-25 Revised:2025-03-31 Online:2025-09-25 Published:2025-09-19
  • Contact: Yong Han E-mail:Yonghan@xmut.edu.cn

摘要:

针对十字路口视觉障碍场景下车辆与弱势道路使用者(VRUs)的碰撞风险,本文提出了一种融合道路环境特征的行车风险评估方法。基于VRU-TRAVi(vulnerable road users traffic accident database with video)数据库中的831例事故视频,通过K-modes聚类提取3类典型场景:通行信号灯、无信号灯及警示信号灯交叉口。通过差异性分析,揭示了车辆与障碍物的速度(VSpd、OSpd)、加速度(VAcc、OAcc)与道路环境特征的显著性关联。基于聚类场景中运动学参数的中位数设定安全阈值,并结合道路特征权重构建了风险评估模型(Urfr)。结果表明:在通行信号灯交叉口,当障碍物速度OSpd=0,车辆速度VSpd≥45 km?h-1、加速度VAcc≥0时行车风险最高。在无信号灯交叉口,当障碍物OSpd=0、车辆VSpd≥35 km?h-1VAcc≥0时行车风险最高。在警示信号灯交叉口,当障碍物速度OSpd≤10.29 km?h-1、加速度OAcc≤0、车辆VSpd≥38 km?h-1VAcc≥3.74 m?s-2时行车风险最高。模型量化了道路环境特征对运动学参数的差异化影响,可为自动驾驶车辆在复杂视觉障碍场景下的风险预测与主动控制提供理论支持。

关键词: 自动驾驶安全, 道路特征风险评估, 聚类分析, VRUs, 风险量化

Abstract:

For the collision risk between vehicles and vulnerable road users (VRUs) at intersections with visual occlusions, in this study a driving risk assessment method integrating road environment characteristics is proposed. Based on 831 accident videos from the VRU-TRAVi (Vulnerable Road Users Traffic Accident database with Video), K-modes clustering is used to extract three typical scenarios: signalized intersections, unsignalized intersections, and warning signal intersections. Through variability analysis, the study reveals significant correlation between kinematic parameters (vehicle speed VSpd, obstacle speed OSpd, vehicle acceleration VAcc, and obstacle acceleration OAcc) and road environment features. A risk assessment model (Urfr) is developed by setting safety thresholds based on the median values of kinematic parameters in clustered scenarios and incorporating road feature weights. The results show that: at traffic signalized intersections, the highest risk of driving occurs when the obstacle speed OSpd = 0, vehicle speed VSpd ≥ 45 km?h-1, acceleration VAcc ≥ 0. At unsignalized intersections, the highest risk of driving occurs when the obstacle OSpd = 0, vehicle VSpd ≥ 35 km?h-1VAcc ≥ 0. At warning signalized intersections, the driving risk is highest when the obstacle speed OSpd ≤ 10.29 km?h-1, acceleration OAcc ≤ 0, and the vehicle VSpd ≥ 38 km?h-1VAcc ≥ 3.74 m?s-2. The model quantifies the impact of road environment features on kinematic parameters, providing a theoretical foundation for risk prediction and active control of autonomous vehicles in visually occluded intersection scenarios.

Key words: autonomous driving safety, road characterization risk assessment model, cluster analysis, VRUs, risk quantification