| [1] |
于东民,杨超,蒋林洳,等. 电动汽车充电安全防护研究综述[J]. 中国电机工程学报,2022,42(6):2145-2164.
|
|
YU D M,YANG C,JIANG L R,et al. Review on safety protection of electric vehicle charging[J]. Proceedings of the Chinese Society of Electrical Engineering,2022,42(6):2145-2164.
|
| [2] |
孙方静,韦连梅,张家玮,等. 锂离子电池快充石墨负极材料的研究进展及评价方法[J]. 储能科学与技术,2017,6(6):1223-1230.
|
|
SUN F J,WEI L M,ZHANG J W,et al. Research progress and evaluation methods of lithium-ion battery fast-charge graphite anode material[J]. Energy Storage Science and Technology,2017,6(6):1223-1230.
|
| [3] |
WANG L,QIN Z,SLANGEN T,et al. Grid impact of electric vehicle fast charging stations:trends,standards,issues and mitigation measures-an overview[J]. IEEE Open Journal of Power Electronics,2021,2:56-74.
|
| [4] |
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 电动汽车充电用电缆:GB/T 33594—2017 [S]. 北京:中国标准出版社,2017.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (AQSIQ), Standardization Administration of China (SAC). Electric vehicle charging cable: GB/T 33594—2017 [S]. Beijing: China Standards Press, 2017.
|
| [5] |
李森,唐波,马婷婷,等. 新能源汽车低压充电电缆增强散热研究[J]. 常州大学学报(自然科学版),2020,32(1):62-69.
|
|
LI S,TANG B,MA T T,et al. Review of research on the enhanced heat dissipation of low voltage charging cables for new energy vehicles[J]. Journal of Changzhou University(Natural Science Edition),2020,32(1):62-69.
|
| [6] |
WU Y,YU H,ZHANG J,et al. Optimal design of liquid cooling structures for superfast charging cable cores under a high current load[J]. Case Studies in Thermal Engineering,2024,53:103821.
|
| [7] |
任金玲,崔久德,赵凯斌,等. 一种大功率冷却型直流充电桩电缆的研制[J]. 电线电缆,2020(3):18-20,24.
|
|
REN J L,CUI J D,ZHAO K B,et al. Development of a high-power cooled dc charging pile cable[J]. Electric Wire and Cable,2020(3):18-20,24.
|
| [8] |
潘爱梅. 一种新型特种充电电缆的研制[J]. 电工电气,2022(3):73-76.
|
|
PAN A M. Development of a new special charging cable[J]. Electrotechnics Electric,2022(3):73-76.
|
| [9] |
DING Y,JI H,WEI M,et al. Effect of liquid cooling system structure on lithium-ion battery pack temperature fields[J]. International Journal of Heat and Mass Transfer,2022,183:122178.
|
| [10] |
LI M,ZHENG J X,HAMLET K,et al. Engineering design of forced-flow cooling HTS cable for SMES system with high current capacity[J]. IEEE Transactions on Applied Superconductivity,2024,34:5.
|
| [11] |
WU Y,HE Y,ZHANG J H,et al. Optimal design of liquid cooling structures for superfast charging cable cores under a high current load[J]. Case Studies in Thermal Engineering,2024,53:103821.
|
| [12] |
LIU C K,LI M L,HU D W,et al. Liquid metal-enabled synergetic cooling and charging of superhigh current. engineering[J]. 2024. https://doi. org/10. 1016/j. eng. 2024. 11. 035.
|
| [13] |
DEVAHDHANUSH V S,LEE S,MUDAWAR I. Experimental investigation of subcooled flow boiling in annuli with reference to thermal management of ultra-fast electric vehicle charging cables[J]. International Journal of Heat and Mass Transfer,2021,172:121176.
|
| [14] |
全国汽车标准化技术委员会. 电动汽车传导充电用连接装置第1部分:通用要求:GB/T 20234. 1—2023 [S]. 北京:中国标准出版社,2023.
|
|
National Technical Committee of Auto Standardization (SAC/TC 114). Connection set for conductive charging of electric vehicles-Part 1: General requirements: GB/T 20234. 1—2023 [S]. Beijing: China Standards Press, 2023.
|
| [15] |
METWALLY I A,AL-BADI A H,AL-FARSI A S. Factors influencing ampacity and temperature of underground power cables[J]. Electrical Engineering,2013,95(4):383-392.
|
| [16] |
CHE C,YAN B,FU C,et al. Improvement of cable current carrying capacity using COMSOL software[J]. Energy Reports,2022,8:931-942.
|
| [17] |
BUSTAMANTE S,MíNGUEZ R,ARROYO A,et al. Thermal behaviour of medium-voltage underground cables under high-load operating conditions[J]. Applied Thermal Engineering,2019,156:444-452.
|
| [18] |
LEE J,O'NEILL L E,LEE S,et al. Experimental and computational investigation on two-phase flow and heat transfer of highly subcooled flow boiling in vertical upflow[J]. International Journal of Heat and Mass Transfer,2019,136:1199-1216.
|
| [19] |
MANSOUR S A,AL-GHOURY M E,SHALAAN E,et al. Thermal properties of graphite-loaded nitrile rubber/poly(vinyl chloride) blends[J]. Journal of Applied Polymer Science,2010,116(6):3171-3177.
|
| [20] |
NASKAR K. Thermoplastic elastomers based on PP/EPDM blends by dynamic vulcanization[J]. Rubber Chemistry and Technology,2007,80(3):504-519.
|
| [21] |
张天宇. 多液滴冲击薄液膜流动与传热三维数值模拟研究[D]. 大连:大连理工大学,2019.
|
|
ZHANG T Y. 3D numerical simulations on flow and heat transfer in multi droplet impact on liquid film[D]. Dalian:Dalian University of Technology,2019.
|
| [22] |
XIA L,DONG D,ZHANG H,et al. Numerical simulation of wickless gravity-assisted two-phase cooling system used in heavy duty extrusion pelleting line[J]. International Journal of Heat and Mass Transfer,2017,111:540-550.
|
| [23] |
AL-AMMAR A A,AL-DADAH R K,MAHMOUD S M. Numerical investigation of effect of fill ratio and inclination angle on a thermosiphon heat pipe thermal performance[J]. Applied Thermal Engineering,2016,108:1055-1065.
|
| [24] |
KUEHN T H,GOLDSTEIN R J. Correlating equations for natural convection heat transfer between horizontal circular cylinders[J]. International Journal of Heat and Mass Transfer,1976,19(10):1127-1134.
|
| [25] |
CHURCHILL S W,CHURCHILL R U. A comprehensive correlating equation for heat and component transfer by free convection[J]. AIChE Journal,2010,21(3):604-606.
|
| [26] |
ABU-NADA E,MASOUD Z,HIJAZI A. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids[J]. International Communications in Heat and Mass Transfer,2008,35(5):657-665.
|