汽车工程 ›› 2025, Vol. 47 ›› Issue (9): 1782-1789.doi: 10.19562/j.chinasae.qcgc.2025.09.014

• • 上一篇    

电动汽车大功率快充线缆单相液冷特性研究

周志龙,梁刚涛()   

  1. 大连理工大学能源与动力学院,海洋能源利用与节能教育部重点实验室,大连 116024
  • 收稿日期:2025-03-05 修回日期:2025-04-05 出版日期:2025-09-25 发布日期:2025-09-19
  • 通讯作者: 梁刚涛 E-mail:gtliang@dlut.edu.cn
  • 基金资助:
    国家自然科学基金优秀青年科学基金(52422605)

Single-phase Liquid Cooling Characteristics of High-Power Fast-Charging Cables for Electric Vehicles

Zhilong Zhou,Gangtao Liang()   

  1. School of Energy and Power Engineering,Dalian University of Technology,Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education,Dalian 116024
  • Received:2025-03-05 Revised:2025-04-05 Online:2025-09-25 Published:2025-09-19
  • Contact: Gangtao Liang E-mail:gtliang@dlut.edu.cn

摘要:

伴随电动汽车保有量的飞速增加,电动汽车充电慢、充电难的行业痛点愈加明显。为满足电动汽车快速充电的需求,大功率快充技术应运而生,然而充电电流的不断增加会引发充电线缆温度的急剧升高,其冷却问题已成为电动汽车大功率快充技术的主要难点之一。本研究通过数值模拟的方法,对比分析了液冷通道布置方式、冷却液质量流速、冷却液入口过冷度等因素对线缆温度分布的影响。结果表明,在相同缆芯截面积和相同液冷通道截面积的条件下,液冷通道外置布置方式对充电线缆的冷却效果优于内置布置;提高入口过冷度可在一定程度上降低线缆温度,但冷却液在液冷通道内存在最佳质量流速500 kg/(m2·s)。在本文工况下,液冷线缆可承受的最大电流为1 250 A,是标准线缆额定电流的10倍。

关键词: 充电线缆, 单相液冷, 载流量, 布置方式

Abstract:

With the rapid increase in the number of electric vehicles, the pain points of slow charging and difficult charging of electric vehicles have become more and more obvious. In order to meet the rapid charging demand of electric vehicles, high-power fast charging technology has emerged. However, the elevated charging current will precipitate a precipitous increase in the temperature of charging cable, and its cooling problem has become a significant challenge in the development of high-power fast charging technology for electric vehicles. In this study, the effect of liquid cooling channel arrangement, coolant mass flow rate, and inlet subcooling degree on the temperature distribution of cables are comparatively analyzed by numerical simulation. The results show that when the core cross-sectional area and liquid-cooling channel cross-sectional area remain constant, the cooling effect of liquid-cooling channel external configuration on charging cables is better than that of internal configuration. Increasing the inlet subcooling degree can decrease the temperature of charging cable, however, there exists an optimal mass flux of 500 kg/(m2·s). Under the working conditions specified in this study, the liquid-cooled cable is capable of withstanding a maximum current of 1 250?A, which is ten times of a standard cable.

Key words: charging cable, single-phase liquid cooling, current carrying capacity, channel arrangement