汽车工程 ›› 2020, Vol. 42 ›› Issue (8): 1027-1033.doi: 10.19562/j.chinasae.qcgc.2020.08.005

• • 上一篇    下一篇

基于图卷积网络的多信息融合驾驶员分心行为检测*

白中浩1,2, 王韫宇1, 张林伟1   

  1. 1.湖南大学,汽车车身先进设计制造国家重点实验室,长沙 410082;
    2.福建工程学院,福建省汽车电子与电驱动重点实验室,福州 350118
  • 收稿日期:2019-09-19 出版日期:2020-08-25 发布日期:2020-09-24
  • 通讯作者: 白中浩,教授,E-mail:baizhonghao@163.com。
  • 基金资助:
    *国家自然科学基金(51621004,51475153)和福建工程学院科研创新平台开放基金(KF-X18001)资助。

Driver Distraction Behavior Detection with Multi-information Fusion Based on Graph Convolution Networks

Bai Zhonghao1,2, Wang Yunyu1, Zhang Linwei1   

  1. 1. Hunan University, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Changsha 410082;
    2. Fujian University of Technology, Fujian Key Laboratory of Automotive Electronics and Electric Drive, Fuzhou 350118
  • Received:2019-09-19 Online:2020-08-25 Published:2020-09-24

摘要: 为减少由驾驶员分心造成的交通事故,并检测驾驶员在自动驾驶情况下的分心状态以判断驾驶员是否有接管车辆的能力,提出了一种基于图卷积的多信息融合驾驶员分心行为检测方法。通过分析驾驶员分心行为和姿态特征,设计了驾驶员姿态估计图,基于图卷积网络对驾驶员姿态估计图进行特征提取,使用全连接层对所提取特征进行行为分类,同时融合手机等关键物体信息对驾驶员分心行为进行再判断。实验结果表明,本文提出的方法在SrateFarm数据集和自制数据集上分别达到了90%和93%的准确率,检测速度约为20帧/s,准确性和实时性均达到检测要求。

关键词: 驾驶员分心, 姿态估计, 行为识别, 图卷积网络

Abstract: In order to reduce the traffic accidents caused by driver's distraction, and detect the distraction state of the driver during automatic driving for judging whether the driver has the ability to take over the vehicle, a multi-information fusion driver distraction behavior detection method based on graph convolution is proposed. By analyzing the distraction behavior and posture features of the driver, the posture estimation graph of the driver is designed. The feature extraction of driver's posture estimation graph is conducted based on graph convolution network, the features extracted are classified by using full connected layer, and the driver's distraction behaviors are judged again by the fusion of key objects like mobile phone. Experiment results show that the method proposed can achieve 90% and 93% accuracy on SrateFarm dataset and the self-made dataset respectively with a detection speed of 20 frames per second, meeting the detection requirements of accuracy and real-time performance.

Key words: driver distraction, posture estimation, behavior recognition, graph convolution network