汽车工程 ›› 2021, Vol. 43 ›› Issue (7): 1077-1087.doi: 10.19562/j.chinasae.qcgc.2021.07.015

• • 上一篇    下一篇

基于并线行为识别的自适应巡航控制方法

蔡英凤1,吕志军1,孙晓强1,王海2(),刘擎超1,陈龙1,袁朝春1   

  1. 1.江苏大学汽车工程研究院,镇江 212000
    2.江苏大学汽车与交通工程学院,镇江 212000
  • 收稿日期:2021-01-11 修回日期:2021-02-17 出版日期:2021-07-25 发布日期:2021-07-20
  • 通讯作者: 王海 E-mail:wanghai1019@163.com
  • 基金资助:
    国家重点研发计划(2017YFB0102603);国家自然科学基金(51875255);江苏省自然科学基金(BK20180100);江苏省六大人才高峰项目(2018?TD?GDZB?022)

An Adaptive Cruise Control Scheme Based on Merging Behavior Recognition

Yingfeng Cai1,Lü Zhijun1,Xiaoqiang Sun1,Hai Wang2(),Qingchao Liu1,Long Chen1,Chaochun Yuan1   

  1. 1.Automotive Engineering Research Institute,Jiangsu University,Zhenjiang 212000
    2.School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212000
  • Received:2021-01-11 Revised:2021-02-17 Online:2021-07-25 Published:2021-07-20
  • Contact: Hai Wang E-mail:wanghai1019@163.com

摘要:

本文中针对自适应巡航控制系统受旁车并线影响产生的制动干预时机不确定性问题,提出了一种采用旁道车辆并线行为进行优化的自适应巡航控制策略,以获得制动干预的最佳时机。首先,建立了以历史行驶数据和周围环境为输入、基于长短时记忆网络的驾驶行为识别模型,实现对旁道车辆驾驶行为类别的有效识别。当识别出并线行为后,根据并线车辆运动状态对自适应巡航系统进行加速度控制,建立系统的预测控制模型,确定跟随性、舒适性和油耗这3项性能指标与约束条件,并引入理想点法对期望加速度进行求解,有效避免了人为选择权重因素的干扰。然后,将最优控制序列的第一个元素作用于系统,再重新评估系统状态信息以实现滚动优化。最后,建立MATLAB/Simulink仿真模型,进行定速巡航、跟车行驶和并线工况的对比仿真,并通过实车试验进行验证。结果表明:所提算法能更快响应旁车并线时跟车目标的变化,有效降低速度波动,避免了绝大部分的车辆紧急制动,同时,考虑并线驾驶特性的控制模型能有效提高乘车舒适性,降低安全风险。

关键词: 自适应巡航控制, 模型预测控制, 行为识别, 多目标优化

Abstract:

In view of the uncertainty of braking intervention timing for the conventional adaptive cruise control system under side?car merging condition, an adaptive cruise control strategy is proposed which is optimized based on side car merging behavior. Firstly, with the historical driving data and surrounding environment as inputs and based on long short?term memory network, a driving behavior recognition model is set up to fulfill the effective recognition of the driving behavior category of side?lane vehicles. Once the merging behavior is recognized, an acceleration control is applied to the adaptive cruise system according to the motion state of merging vehicle, with a predictive control model for the system established. Then tracking performance, ride comfort and fuel consumption three performance indicators and constraint conditions are determined, and the desired acceleration is solved out by using the utopia point method, effectively avoiding the interference of manually selected weighting factors. Next, the first element of optimal control sequence is acting on the system for evaluating the system state information to achieve rolling optimization. Finally, a simulation model is established with MATLAB/Simulink to conduct a comparative simulation on three conditions of constant?speed cruising, vehicle tracking driving and merging, with real vehicle test performed for verification. The results show that the algorithm proposed can response to the change of tracked target faster in side car merging, effectively reduce the speed fluctuation and avoid the most of vehicle emergent braking, while the control model adopted with consideration of merging driving characteristics can enhance the ride comfort and reduce the safety risk of vehicle.

Key words: adaptive cruise control, model predictive control, behavior recognition, multi?objective optimization