汽车工程 ›› 2023, Vol. 45 ›› Issue (11): 2047-2057.doi: 10.19562/j.chinasae.qcgc.2023.11.006

所属专题: 新能源汽车技术-电驱动&能量管理2023年

• • 上一篇    下一篇

锂电池热管-液冷板式冷却结构多目标优化

段志勇1,马菁2()   

  1. 1.长安大学能源与电气工程学院,西安 710018
    2.长安大学汽车学院,西安 710018
  • 收稿日期:2023-07-06 修回日期:2023-08-29 出版日期:2023-11-25 发布日期:2023-11-27
  • 通讯作者: 马菁 E-mail:jingma@chd.edu.cn
  • 基金资助:
    国家自然科学基金(51976014);陕西省重点研发项目(2020GY-200);中央高校基本业务费(30010229305)

Multi-objective Optimization of Lithium Battery Composite Cooling Structure Based on Heat Pipes and Liquid Cooling Plate

Zhiyong Duan1,Jing Ma2()   

  1. 1.School of Energy and Electrical Engineering,Chang’an University,Xi’an  710018
    2.School of Automobile,Chang’an University,Xi’an  710018
  • Received:2023-07-06 Revised:2023-08-29 Online:2023-11-25 Published:2023-11-27
  • Contact: Jing Ma E-mail:jingma@chd.edu.cn

摘要:

为满足锂电池成包后的温度一致性需求,本文提出一种基于热管与液冷板的复合冷却结构。利用数值模拟对液冷板内两种不同流道(流道I和流道II)的冷却性能进行对比,结果表明流道II的冷却性能更优;采用正交试验法筛选出4个对流道II冷却性能影响较大的结构因素作为设计变量,以电池组温差和冷却液压降为目标函数,建立设计变量与目标函数之间的Kriging代理模型并采用NSGA-II遗传算法进行寻优。与初始结构相比,优化后的流道II对应的电池组温差和冷却液压降分别降低了10.52%和50.14%,而电池组最高温度仅升高了0.68%。本文的方法和结论可为热管式锂电池冷却结构的设计与优化提供借鉴。

关键词: 锂电池, 热管, 液冷板, 正交试验, 多目标优化

Abstract:

To meet the temperature consistency requirements of lithium batteries after packaging, this paper proposes a composite cooling structure based on heat pipe (HP) and liquid cooling plate (CP). Using numerical simulation to compare the cooling performance of two different channels (Channel I and Channel II) in the CPs, the results show that Channel II has better cooling performance. Then, four structural factors that exert substantial influence on the cooling performance of Channel II are selected as design variables by the orthogonal experiment method, and the battery module temperature difference and coolant pressure drop are set as the objective functions. The Kriging surrogate model between the design variables and the objective functions is established, and the NSGA-II genetic algorithm is used for the optimization. Compared to the initial structure, the optimized Channel II results in a 10.52% reduction and a 50.14% reduction in temperature difference and coolant pressure drop, respectively, with only a 0.68% increase in maximum temperature. The methods and conclusions of this paper can provide a reference for the design and optimization of lithium battery cooling structure based on HP-CP.

Key words: lithium battery, heat pipe, liquid cooling plate, orthogonal design, multi-objective optimization