汽车工程 ›› 2023, Vol. 45 ›› Issue (2): 209-218.doi: 10.19562/j.chinasae.qcgc.2023.02.006
所属专题: 新能源汽车技术-动力电池&燃料电池2023年
收稿日期:
2022-08-14
修回日期:
2022-09-05
出版日期:
2023-02-25
发布日期:
2023-02-21
通讯作者:
邸立明
E-mail:diliming@ysu.edu.cn
基金资助:
Guijing Li,Qingkai Gu,Haoxin Yang,Jianqi Huang,Liming Di()
Received:
2022-08-14
Revised:
2022-09-05
Online:
2023-02-25
Published:
2023-02-21
Contact:
Liming Di
E-mail:diliming@ysu.edu.cn
摘要:
本文提出了一种将复合相变材料(石蜡(PA)混合膨胀石墨(EG))与空冷相耦合的电池热管理方案(简称APE-BTMS),该系统中电池中部采用PA/ EG进行冷却,电池的上下端采用空冷(空气流速为1.23 m/s)。APE-BTMS的主要目的是,将电池的工作温度冷却到最佳温度范围的同时,减轻整个电池热管理系统的质量。实验结果表明:APE-BTMS-45模型在相同的条件下展现了最佳的冷却性能;同时,基于COMSOL建立APE-BTMS数值模型,进行更加精细地轴向厚度和不同环境温度下对APE-BTMS冷却性能加以对比,经数值模拟结果进一步验证,APE-BTMS-45在对比数据中具有最佳的冷却性能,并可最大轻量216.71 kg。本文的研究结果可为基于相变材料的电池热管理系统的设计开发提供参考和数据支撑。
李贵敬,谷青锴,杨昊鑫,黄健齐,邸立明. PA/EG耦合风冷电池热管理系统轻量研究[J]. 汽车工程, 2023, 45(2): 209-218.
Guijing Li,Qingkai Gu,Haoxin Yang,Jianqi Huang,Liming Di. Study on Light Weight of Battery Thermal Management System with PA/ EG Coupled Air Cooling[J]. Automotive Engineering, 2023, 45(2): 209-218.
1 | XING Y, MA E W M, TSUI K L, et al. Battery management systems in electric and hybrid vehicles [J]. Energies, 2011, 4(11): 1840-1857. |
2 | ZHAO R, GU J, LIU J. Performance assessment of a passive core cooling design for cylindrical lithium‐ion batteries [J]. International Journal of Energy Research, 2018, 42(8): 2728-2740. |
3 | WANG Y, GAO Q, WANG G, et al. A review on research status and key technologies of battery thermal management and its enhanced safety [J]. International Journal of Energy Research, 2018, 42(13): 4008-4033. |
4 | 于翔.纯电动乘用车动力电池冷却策略优化研究 [C]. 中国汽车工程学会年会论文集.北京:中国汽车工程学会,2019: 319-324. |
YU X. Research on optimization of power battery co-oling strategy for pure electric passenger cars [C]. Procee-dings of the Annual Meeting of China Society of Automoti-ve Engineering in 2019. Beijing: Society of Automotive En-gineers, 2019: 319-324. | |
5 | SHEN M, GAO Q. A review on battery management system from the modeling efforts to its multiapplication and integration [J]. International Journal of Energy Research, 2019, 43(10): 5042-5075. |
6 | CICCONI P, KUMAR P, VARSHNEY P. A support approach for the modular design of Li-ion batteries: a test case with PCM [J]. Journal of Energy Storage, 2020, 31: 101684. |
7 | PARK S, JUNG D. Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle [J]. Journal of Power Sources, 2013, 227: 191-198. |
8 | IANNICIELLO L, BIWOLÉ P H, ACHARD P. Electric vehicles batteries thermal management systems employing phase change materials [J]. Journal of Power Sources, 2018, 378: 383-403. |
9 | JARRETT A, KIM I Y. Design optimization of electric vehicle battery cooling plates for thermal performance [J]. Journal of Power Sources, 2011, 196(23): 10359-10368. |
10 | CHEN J, KANG S, JIAQIANG E, et al. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: a review [J]. Journal of Power Sources, 2019, 442: 227228. |
11 | BUONOMO B, ERCOLE D, MANCA O, et al. Thermal cooling behaviors of lithium-ion batteries by metal foam with phase change materials [J]. Energy Procedia, 2018, 148: 1175-1182. |
12 | LI Y, DU Y, XU T, et al. Optimization of thermal management system for Li-ion batteries using phase change material [J]. Applied Thermal Engineering, 2018, 131: 766-778. |
13 | HE J, YANG X, ZHANG G. A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management [J]. Applied Thermal Engineering, 2019, 148: 984-991. |
14 | LUO J, ZOU D, WANG Y, et al. Battery thermal management systems (BTMs) based on phase change material (PCM): a comprehensive review [J]. Chemical Engineering Journal, 2022, 430: 132741. |
15 | 田云峰, 李珍, 王洋, 等. 石蜡/不同粒径膨胀石墨复合相变储热材料的制备和性能 [J]. 材料研究学报, 2015, 29(4): 262-268. |
TIAN Y, LI Z, WANG Y, et al. Preparation and performance of a phase change heat storage composite of paraffin/ different particle sized expanded graphite [J]. Chinese Journal of Materials Research, 2015, 29(4): 262-268. | |
16 | LV Y, YANG X, LI X, et al. Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins [J]. Applied Energy, 2016, 178: 376-382. |
17 | WENG J, YANG X, ZHANG G, et al. Optimization of the detailed factors in a phase-change-material module for battery thermal management [J]. International Journal of Heat and Mass Transfer, 2019, 138: 126-134. |
18 | BIPM, IEC, IFCC, et al. Evaluation of measurement data -- guide to the expression of uncertainty in measurement [J]. Citado en las, 2008, 167. |
19 | 胡晓松,唐小林.电动车辆锂离子动力电池建模方法综述[J]. 机械工程学报, 2017, 53(16): 20-31. |
HU X, TANG X. Review of modeling techniques for lithium-ion traction batteries in electric vehicles [J]. Journal of Mechanical Engineering, 2017, 53(16): 20-31. |
[1] | 陈飞,孔祥栋,孙跃东,韩雪冰,卢兰光,郑岳久,欧阳明高. 锂离子电池制造工艺仿真技术进展[J]. 汽车工程, 2023, 45(9): 1516-1529. |
[2] | 胡明辉,朱广曜,刘长贺,唐国峰. 考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计[J]. 汽车工程, 2023, 45(9): 1688-1701. |
[3] | 梁海强,何洪文,代康伟,庞博,王鹏. 融合经验老化模型和机理模型的电动汽车锂离子电池寿命预测方法研究[J]. 汽车工程, 2023, 45(5): 825-835. |
[4] | 廉玉波,凌和平,马晴婵,任强,贺斌. 电动汽车锂离子电池脉冲加热技术研究进展[J]. 汽车工程, 2023, 45(2): 169-174. |
[5] | 吕又付,罗卫明,陈荐,吴锡鸿,李传常. 分层优化测定锂离子电池比热容参数的实验研究[J]. 汽车工程, 2023, 45(2): 183-190. |
[6] | 张健豪,高兴奇,张莉. 基于容量增量曲线与充电容量差的电池组微短路诊断方法[J]. 汽车工程, 2023, 45(2): 191-198. |
[7] | 路兴隆,张甫仁,赵海波,孙世政,李雪,赵浩东. 基于同心圆结构的新型液冷板优化设计及其性能研究[J]. 汽车工程, 2023, 45(11): 2058-2069. |
[8] | 王萍,弓清瑞,程泽,张吉昂. 基于AUKF的锂离子电池SOC估计方法[J]. 汽车工程, 2022, 44(7): 1080-1088. |
[9] | 彭宇明,袁明晓,敬卓鑫,张永林,黄港. 汇流排产热影响下的电池模组冷却系统改进设计[J]. 汽车工程, 2022, 44(6): 859-867. |
[10] | 毕贵红,谢旭,蔡子龙,骆钊,陈臣鹏,赵鑫. 动态条件下基于深度学习的锂电池容量估计[J]. 汽车工程, 2022, 44(6): 868-878. |
[11] | 马彦,李佳怡,马乾,陈明超. 基于迭代动态规划的动力电池组热管理优化策略[J]. 汽车工程, 2022, 44(5): 709-721. |
[12] | 刘首彤,黄沛丰,白中浩. 锂离子电池机械滥用失效机理及仿真模型研究进展[J]. 汽车工程, 2022, 44(4): 465-475. |
[13] | 孙涛,郑侠,郑岳久,卢宇芳,匡柯,韩雪冰. 基于电化学热耦合模型的锂离子电池快充控制[J]. 汽车工程, 2022, 44(4): 495-504. |
[14] | 程夕明,胡薇,翟钧,罗荣华,张盼,徐野. 纯电动汽车低压电气系统效率研究[J]. 汽车工程, 2022, 44(4): 601-608. |
[15] | 王萍,彭香园,程泽,张吉昂. 基于数据驱动模型融合的锂离子电池多时间尺度状态联合估计方法[J]. 汽车工程, 2022, 44(3): 362-371. |
|