汽车工程 ›› 2023, Vol. 45 ›› Issue (9): 1688-1701.doi: 10.19562/j.chinasae.qcgc.2023.09.017
所属专题: 新能源汽车技术-动力电池&燃料电池2023年
收稿日期:
2023-04-25
修回日期:
2023-05-24
出版日期:
2023-09-25
发布日期:
2023-09-23
通讯作者:
胡明辉
E-mail:minghui_h@163.com
基金资助:
Minghui Hu1,2(),Guangyao Zhu1,2,Changhe Liu1,2,Guofeng Tang1,2
Received:
2023-04-25
Revised:
2023-05-24
Online:
2023-09-25
Published:
2023-09-23
Contact:
Minghui Hu
E-mail:minghui_h@163.com
摘要:
由于迟滞特性的存在,电池管理系统难以准确获得开路电压(OCV)与荷电状态(SOC)之间的状态关系。为有效地运行和管理动力电池,本文研究了考虑迟滞特性的锂离子电池模型,选用带有遗忘因子的递推最小二乘法进行参数在线辨识。提出了一种联合门控循环单元(GRU)神经网络和自适应扩展卡尔曼滤波(AEKF)的SOC估计,分别以AEKF和GRU神经网络的估计结果为模型值和测量值,通过卡尔曼滤波(KF)得到最终的SOC估计结果,并作为下一时刻AEKF的输入。结果表明,常温环境下考虑迟滞特性的模型对端电压预测及联合估计法对SOC估计的均方根误差(RMSE)分别在0.5 mV和0.64%以内;低温及变温环境下端电压预测及SOC估计的RMSE分别在0.9 mV和0.72%以内。考虑迟滞特性的模型及联合估计法具有良好的精度和鲁棒性。
胡明辉,朱广曜,刘长贺,唐国峰. 考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计[J]. 汽车工程, 2023, 45(9): 1688-1701.
Minghui Hu,Guangyao Zhu,Changhe Liu,Guofeng Tang. Joint Estimation of State of Charge for Lithium-Ion Battery with Kalman Filtering and Gated Recurrent Unit Neural Networks Considering Hysteresis Characteristics[J]. Automotive Engineering, 2023, 45(9): 1688-1701.
1 | ZHANG Q, SHANG Y L, LI Y, et al. A novel fractional variable-order equivalent circuit model and parameter identification of electric vehicle Li-ion batteries[J]. ISA Transactions, 2020, 97: 448-457. |
2 | NG M F, ZHAO J, YAN Q Y, et al. Predicting the state of charge and health of batteries using data-driven machine learning[J]. Nature Machine Intelligence, 2020, 2(3): 161-170. |
3 | HE X T, SUN B X, ZHANG W G, et al. Multi-time scale variable-order equivalent circuit model for virtual battery considering initial polarization condition of lithium-ion battery[J]. Energy, 2022, 244: 123084. |
4 | WYCISK D, OLDENBURGER M, STOYE M G, et al. Modified Plett-model for modeling voltage hysteresis in lithium-ion cells[J]. Journal of Energy Storage, 2022, 52: 105016. |
5 | CUI Z H, KANG L, LI L W, et al. A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF[J]. Energy, 2022, 259: 124933. |
6 | PANCHAL S, MATHEW M, FRASER R, et al. Electrochemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV[J]. Applied Thermal Engineering, 2018, 135: 123-132. |
7 | HU X S, FENG F, LIU K L, et al. State estimation for advanced battery management: key challenges and future trends[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109334. |
8 | PATIL M S, SEO J H, PANCHAL S, et al. Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119728. |
9 | WANG Y J, TIAN J Q, SUN Z D, et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110015. |
10 | ZHANG S Z, ZHANG X W. Joint estimation method for maximum available energy and state-of-energy of lithium-ion battery under various temperatures[J]. Journal of Power Sources, 2021, 506: 230132. |
11 | ZHU L T, SUN Z C, DAI H F, et al. A novel modeling methodology of open circuit voltage hysteresis for LiFePO4 batteries based on an adaptive discrete Preisach model[J]. Applied Energy, 2015, 155: 91-109. |
12 | HE Y L, HE R, GUO B, et al. Modeling of dynamic hysteresis characters for the lithium-ion battery[J]. Journal of the Electrochemical Society, 2020, 167(9): 090532. |
13 | ZHU Y J, WANG C S. Strain accommodation and potential hysteresis of LiFePO4 cathodes during lithium ion insertion/extraction[J]. Journal of Power Sources, 2011, 196(3): 1442-1448. |
14 | 林春景, 李丹华, 温浩然, 等. 动力电池在充电过程中的膨胀力特性[J]. 储能科学与技术, 2022, 11(5): 1627-1633. |
LIN C J, LI D H, WEN H R, et al. Research on swelling force characteristics of power battery during charging[J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. | |
15 | LU B, SONG Y C, ZHANG Q L, et al. Voltage hysteresis of lithium ion batteries caused by mechanical stress[J]. Physical Chemistry Chemical Physics, 2016, 18(6): 4721-4727. |
16 | ZHOU W L, ZHENG Y P, PAN Z J, et al. Review on the battery model and SOC estimation method[J]. Processes, 2021, 9(9): 1685. |
17 | JIANG C, WANG S L, WU B, et al. A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter [J]. Energy, 2021, 219: 119603. |
18 | HOSSAIN M, HAQUE M E, ARIF M T. Kalman filtering techniques for the online model parameters and state of charge estimation of the Li-ion batteries: a comparative analysis[J]. Journal of Energy Storage, 2022, 51: 104174. |
19 | LIN X Y, TANG Y L, REN J, et al. State of charge estimation with the adaptive unscented Kalman filter based on an accurate equivalent circuit model[J]. Journal of Energy Storage, 2021, 41: 102840. |
20 | CHEN J X, ZHANG Y, LI W J, et al. State of charge estimation for lithium-ion batteries using gated recurrent unit recurrent neural network and adaptive Kalman filter[J]. Journal of Energy Storage, 2022, 55: 105396. |
21 | LIU K L, KANG L I, PENG Q, et al. A brief review on key technologies in the battery management system of electric vehicles[J]. Frontiers of Mechanical Engineering, 2018, 14(1). |
22 | LI Y W, WANG C, GONG J F. A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique[J]. Energy, 2018, 141:1402-1415. |
23 | WEHBE J, KARAMI N. Battery equivalent circuits and brief summary of components value determination of lithium ion: a review[C]. 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE). Beirut, Lebanon: IEEE, 2015: 45-49. |
24 | KIM J, SEO G S, CHUN C, et al. OCV hysteresis effect-based SOC estimation in extended Kalman filter algorithm for a LiFePO4/C cell[C]. 2012 IEEE International Electric Vehicle Conference. Greenville, SC, USA: IEEE, 2012: 1-5. |
25 | KWAK M, LKHAGVASUREN B, PARK J, et al. Parameter identification and SOC estimation of a battery under the hysteresis effect[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9758-9767. |
26 | TRAN M K, MEVAWALA A, PANCHAL S, et al. Effect of integrating the hysteresis component to the equivalent circuit model of lithium-ion battery for dynamic and non-dynamic applications[J]. Journal of Energy Storage, 2020, 32: 101785. |
27 | JIAO M, WANG D. The Savitzky-Golay filter based bidirectional long short-term memory network for SOC estimation[J] International Journal of Energy Research, 2021, 45(13): 19467-19480. |
[1] | 陈飞,孔祥栋,孙跃东,韩雪冰,卢兰光,郑岳久,欧阳明高. 锂离子电池制造工艺仿真技术进展[J]. 汽车工程, 2023, 45(9): 1516-1529. |
[2] | 梁海强,何洪文,代康伟,庞博,王鹏. 融合经验老化模型和机理模型的电动汽车锂离子电池寿命预测方法研究[J]. 汽车工程, 2023, 45(5): 825-835. |
[3] | 王春,唐滔,张永志. 考虑环境温度影响的超级电容SOC加权融合估计方法[J]. 汽车工程, 2023, 45(4): 627-636. |
[4] | 廉玉波,凌和平,马晴婵,任强,贺斌. 电动汽车锂离子电池脉冲加热技术研究进展[J]. 汽车工程, 2023, 45(2): 169-174. |
[5] | 吕又付,罗卫明,陈荐,吴锡鸿,李传常. 分层优化测定锂离子电池比热容参数的实验研究[J]. 汽车工程, 2023, 45(2): 183-190. |
[6] | 张健豪,高兴奇,张莉. 基于容量增量曲线与充电容量差的电池组微短路诊断方法[J]. 汽车工程, 2023, 45(2): 191-198. |
[7] | 李贵敬,谷青锴,杨昊鑫,黄健齐,邸立明. PA/EG耦合风冷电池热管理系统轻量研究[J]. 汽车工程, 2023, 45(2): 209-218. |
[8] | 王萍,弓清瑞,程泽,张吉昂. 基于AUKF的锂离子电池SOC估计方法[J]. 汽车工程, 2022, 44(7): 1080-1088. |
[9] | 彭宇明,袁明晓,敬卓鑫,张永林,黄港. 汇流排产热影响下的电池模组冷却系统改进设计[J]. 汽车工程, 2022, 44(6): 859-867. |
[10] | 毕贵红,谢旭,蔡子龙,骆钊,陈臣鹏,赵鑫. 动态条件下基于深度学习的锂电池容量估计[J]. 汽车工程, 2022, 44(6): 868-878. |
[11] | 马彦,李佳怡,马乾,陈明超. 基于迭代动态规划的动力电池组热管理优化策略[J]. 汽车工程, 2022, 44(5): 709-721. |
[12] | 刘首彤,黄沛丰,白中浩. 锂离子电池机械滥用失效机理及仿真模型研究进展[J]. 汽车工程, 2022, 44(4): 465-475. |
[13] | 孙涛,郑侠,郑岳久,卢宇芳,匡柯,韩雪冰. 基于电化学热耦合模型的锂离子电池快充控制[J]. 汽车工程, 2022, 44(4): 495-504. |
[14] | 程夕明,胡薇,翟钧,罗荣华,张盼,徐野. 纯电动汽车低压电气系统效率研究[J]. 汽车工程, 2022, 44(4): 601-608. |
[15] | 王萍,彭香园,程泽,张吉昂. 基于数据驱动模型融合的锂离子电池多时间尺度状态联合估计方法[J]. 汽车工程, 2022, 44(3): 362-371. |
|