汽车工程 ›› 2022, Vol. 44 ›› Issue (7): 1080-1088.doi: 10.19562/j.chinasae.qcgc.2022.07.014
所属专题: 新能源汽车技术-动力电池&燃料电池2022年
收稿日期:
2021-12-14
修回日期:
2021-12-31
出版日期:
2022-07-25
发布日期:
2022-07-20
通讯作者:
程泽
E-mail:chengze@tju.edu.cn
基金资助:
Ping Wang,Qingrui Gong,Ze Cheng(),Ji’ang Zhang
Received:
2021-12-14
Revised:
2021-12-31
Online:
2022-07-25
Published:
2022-07-20
Contact:
Ze Cheng
E-mail:chengze@tju.edu.cn
摘要:
本文中提出一种基于自适应无迹卡尔曼滤波器(AUKF)的锂离子电池荷电状态(SOC)估计方法。首先建立电池的2阶RC等效电路模型,并对模型的参数进行辨识;其次针对无迹卡尔曼滤波(UKF)算法的不足,引入一般滤波器的收敛判据,从自适应调整测量噪声、调整过程噪声和修正卡尔曼增益的角度改进UKF算法,形成了基于AUKF的SOC估计方法。最后用测试数据和公开电池数据集进行验证,结果表明该方法具有较快的收敛速度和较高的估计精度。
王萍,弓清瑞,程泽,张吉昂. 基于AUKF的锂离子电池SOC估计方法[J]. 汽车工程, 2022, 44(7): 1080-1088.
Ping Wang,Qingrui Gong,Ze Cheng,Ji’ang Zhang. An AUKF-Based SOC Estimation Method for Lithium-ion Battery[J]. Automotive Engineering, 2022, 44(7): 1080-1088.
1 | PANCHAL S, MCGRORY J, KONG J, et al. Cycling degradation testing and analysis of a LiFePO4 battery at actual conditions[J]. International Journal of Energy Research, 2017, 41(15): 2565–2575. |
2 | RAHIMI-EICHI H, OJHA U, BARONTI F, et al. Battery management system: an overview of its application in the smart grid and electric vehicles[J]. IEEE Industrial Electronics Magazine, 2013, 7(2): 4-16. |
3 | IURILLI P, BRIVIO C, MERLO M. SoC management strategies in battery energy storage system providing primary control reserve[J]. Sustainable Energy, Grids and Networks, 2019, 19: 100230. |
4 | ZAHID T, XU K, LI W, et al. State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles[J]. Energy, 2018, 162: 871-882. |
5 | NG K, MOO C, CHEN Y, et al. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries[J]. Applied Energy, 2009, 86(9): 1506–1511. |
6 | TIAN J, XIONG R, SHEN W, et al. Electrode ageing estimation and open circuit voltage reconstruction for lithium ion batteries[J]. Energy Storage Materials, 2021, 37: 283–295. |
7 | ANTON J, NIETO P, VIEJO C, et al. Support vector machines used to estimate the battery state of charge[J]. IEEE Transactions on Power Electronics, 2013, 28(12): 5919-5926. |
8 | DENG Z, HU X, LIN X, et al. Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression[J]. Energy, 2020, 205:118000. |
9 | ZHAO X, XUAN D, ZHAO K, et al. Elman neural network using ant colony optimization algorithm for estimating of state of charge of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: 101789. |
10 | JIAO M, YANG Y, WANG D, et al. The conjugate gradient optimized regularized extreme learning machine for estimating state of charge[J]. Ionics, 2021, 27: 4839-4848. |
11 | 宫明辉, 乌江, 焦朝勇. 基于模糊自适应扩展卡尔曼滤波器的锂电池 SOC 估算方法[J]. 电工技术学报, 2020, 35(18): 3972-3978. |
GONG M, WU J, JIAO C. SOC estimation method of lithium battery based on fuzzy adaptive extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3972-3978. | |
12 | 孙冬, 陈息坤. 基于离散滑模观测器的锂电池荷电状态估计[J]. 中国电机工程学报, 2015, 35(1): 185-191. |
SUN D, CHEN X. Charge state estimation of Li-ion batteries based on discrete-time sliding mode observers[J]. Proceedings of the CSEE, 2015, 35(1): 185-191. | |
13 | KHAKI B, DAS P. An equivalent circuit model for Vanadium Redox Batteries via hybrid extended Kalman filter and Particle filter methods[J]. Journal of Energy Storage, 2021, 39: 102587. |
14 | SEPASI S, GHORBANI R, LIAW B. Improved extended Kalman filter for state of charge estimation of battery pack[J]. Journal of Power Sources, 2014, 255: 368–376. |
15 | DONG X, ZHANG C, JIANG J. Evaluation of SOC estimation method based on EKF/AEKF under noise interference[J]. Energy Procedia, 2018, 152: 520–525. |
16 | TIAN Y, XIA B, SUN W, et al. A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter[J]. Journal of Power Sources, 2014, 270: 619-626. |
17 | ZHENG F, XING Y, JIANG J, et al. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries[J]. Applied Energy, 2016, 183: 513-525. |
18 | 夏飞, 袁博, 彭道刚,等. 基于信息量准则的锂离子电池变阶RC等效电路模型建模及优化方法[J]. 中国电机工程学报, 2018, 38(21): 6441-6451,6506. |
XIA F, YUAN B, PENG D, et al. Modeling and optimization of variable-order RC equivalent circuit model for Lithium ion batteries based on information criterion[J]. Proceedings of the CSEE, 2018, 38(21): 6441-6451,6506. | |
19 | CHEN X, LEI H, XIONG R, et al. A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium ion batteries in electric vehicles[J]. Applied Energy, 2019, 255: 113758. |
20 | PLEET G. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 2. modeling and identification[J]. Journal of Power Sources, 2004, 134(2):262-276. |
21 | 石勇, 韩崇昭. 自适应 UKF 算法在目标跟踪中的应用[J]. 自动化学报, 2011, 37(6): 755-759. |
SHI Y, HAN C. Adaptive UKF method with applications to target tracking[J]. Acta Automatica Sinica, 2011, 37(6): 755-759. | |
22 | 王艳, 臧天磊, 符玲,等. 基于谐波源特征提取的电力系统动态谐波状态估计自适应方法[J]. 电网技术, 2018, 42(8): 2612-2619. |
WANG Y, ZANG T, FU L, et al. Adaptive method for dynamic harmonic state estimation in power system based on feature extraction of harmonic source [J]. Power System Technology, 2018, 42(8): 2612-2619. |
[1] | 陈飞,孔祥栋,孙跃东,韩雪冰,卢兰光,郑岳久,欧阳明高. 锂离子电池制造工艺仿真技术进展[J]. 汽车工程, 2023, 45(9): 1516-1529. |
[2] | 胡明辉,朱广曜,刘长贺,唐国峰. 考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计[J]. 汽车工程, 2023, 45(9): 1688-1701. |
[3] | 梁海强,何洪文,代康伟,庞博,王鹏. 融合经验老化模型和机理模型的电动汽车锂离子电池寿命预测方法研究[J]. 汽车工程, 2023, 45(5): 825-835. |
[4] | 廉玉波,凌和平,马晴婵,任强,贺斌. 电动汽车锂离子电池脉冲加热技术研究进展[J]. 汽车工程, 2023, 45(2): 169-174. |
[5] | 吕又付,罗卫明,陈荐,吴锡鸿,李传常. 分层优化测定锂离子电池比热容参数的实验研究[J]. 汽车工程, 2023, 45(2): 183-190. |
[6] | 张健豪,高兴奇,张莉. 基于容量增量曲线与充电容量差的电池组微短路诊断方法[J]. 汽车工程, 2023, 45(2): 191-198. |
[7] | 李贵敬,谷青锴,杨昊鑫,黄健齐,邸立明. PA/EG耦合风冷电池热管理系统轻量研究[J]. 汽车工程, 2023, 45(2): 209-218. |
[8] | 彭宇明,袁明晓,敬卓鑫,张永林,黄港. 汇流排产热影响下的电池模组冷却系统改进设计[J]. 汽车工程, 2022, 44(6): 859-867. |
[9] | 毕贵红,谢旭,蔡子龙,骆钊,陈臣鹏,赵鑫. 动态条件下基于深度学习的锂电池容量估计[J]. 汽车工程, 2022, 44(6): 868-878. |
[10] | 马彦,李佳怡,马乾,陈明超. 基于迭代动态规划的动力电池组热管理优化策略[J]. 汽车工程, 2022, 44(5): 709-721. |
[11] | 刘首彤,黄沛丰,白中浩. 锂离子电池机械滥用失效机理及仿真模型研究进展[J]. 汽车工程, 2022, 44(4): 465-475. |
[12] | 孙涛,郑侠,郑岳久,卢宇芳,匡柯,韩雪冰. 基于电化学热耦合模型的锂离子电池快充控制[J]. 汽车工程, 2022, 44(4): 495-504. |
[13] | 程夕明,胡薇,翟钧,罗荣华,张盼,徐野. 纯电动汽车低压电气系统效率研究[J]. 汽车工程, 2022, 44(4): 601-608. |
[14] | 王萍,彭香园,程泽,张吉昂. 基于数据驱动模型融合的锂离子电池多时间尺度状态联合估计方法[J]. 汽车工程, 2022, 44(3): 362-371. |
[15] | 刘红锐,古栋华,李海瑞,张彬,钱晶. 一种串联锂离子电池组P-C-C-P均衡器及其控制方法[J]. 汽车工程, 2022, 44(3): 372-378. |
|