汽车工程 ›› 2023, Vol. 45 ›› Issue (2): 191-198.doi: 10.19562/j.chinasae.qcgc.2023.02.004
所属专题: 新能源汽车技术-动力电池&燃料电池2023年
收稿日期:
2022-08-10
修回日期:
2022-09-15
出版日期:
2023-02-25
发布日期:
2023-02-21
通讯作者:
张莉
E-mail:zhanglii@dlut.edu.cn
基金资助:
Jianhao Zhang,Xingqi Gao,Li Zhang()
Received:
2022-08-10
Revised:
2022-09-15
Online:
2023-02-25
Published:
2023-02-21
Contact:
Li Zhang
E-mail:zhanglii@dlut.edu.cn
摘要:
目前还没有一种有效的手段针对处于前期演化阶段的锂离子电池微短路进行检测,为此本文提出了一种基于电池充电容量增量(IC)曲线和充电容量差(DCC)变化规律的微短路故障诊断方法。首先确立锂电池短路故障与充电容量增量的关系,利用小波变换对IC曲线进行降噪,得出在不同电流倍率和温度下IC曲线最高峰(ICPV)与电池荷电状态(SOC)唯一对应。然后提出利用充电容量差DCC描述存在内短路的故障电池与正常电池的SOC差异,并据此得出锂电池微短路的量化方法。最后通过仿真分析与实验验证表明,在不同工况下循环测试均可获得电池微短路的量化信息,且诊断最大误差均小于8.12%。
张健豪,高兴奇,张莉. 基于容量增量曲线与充电容量差的电池组微短路诊断方法[J]. 汽车工程, 2023, 45(2): 191-198.
Jianhao Zhang,Xingqi Gao,Li Zhang. Micro Short Circuit Diagnosis Method of Battery Pack Based on Capacity Increment Curve and Charge Capacity Difference[J]. Automotive Engineering, 2023, 45(2): 191-198.
1 | 郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J].电工技术学报, 2019, 34(19): 3968-3978. |
GUO Y F, HUANG K, LI Z G, Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 3968-3978. | |
2 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京:清华大学, 2016. |
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing:Tsinghua University, 2016. | |
3 | LEE H, CHANG S K, GOH E Y, et al. Li2nio2 as a novel cathode additive for over discharge protection of batteries[J]. Chemistry of Materials, 2008, 20(1):5-7. |
4 | BARNETT B. Technologies for detection and intervention of internal short circuits in Li-ion batteries [C]. 5th Annual Battery Safety, Washington D.C., USA, 2014. |
5 | SAZHIN S V, DUFEK E J, GERING K L. Enhancing Li-ion battery safety by early detection of nascent internal shorts [J]. Ecs Transactions, 2017, 164(1): A6281-A6287. |
6 | KEATES A W, OTANI N, NGUYEN D J, et al. Short circuit detection for batteries: US7795843B2 [P]. 2010, 09, 14. |
7 | ASAKURA J, NAKASHIMA T, FUJIKAWA M. Battery internal short-circuit detection apparatus and method, and battery pack:US20080602752 [P]. 2010. |
8 | SEO M, PARK M. Online detection of soft internal short circuit in lithium-ion batteries at various standard charging ranges[J]. IEEE Access, 2020 (99): 1. |
9 | KIM C S, YOO J S, JEONG K M, et al. Investigation on internal short circuits of lithium polymer batteries with a ceramic-coated separator during nail penetration[J]. Journal of Power Sources, 2015, 289(1): 41-49. |
10 | 张明轩. 汽车动力电池系统内短路问题研究[D]. 北京:清华大学, 2018. |
ZHANG M X. Research on the internal short circuit problem of the vehicle power battery system[D]. Beijing:Tsinghua University, 2018. | |
11 | HAO Y C, CHEN X B, LI T. Method, apparatus, device and medium for detecting internal short circuit fault of battery cell: US17566694 [P]. 2021. |
12 | AMIRHOSSEIN M. Fast and precise detection of internal short circuit on li-ion battery[A]. 2018. |
13 | KONG X, PLETT G L, TRIMBOLI M S, et al. Pseudo-two-dimensional model and impedance diagnosis of micro internal short circuit in lithium-ion cells [J]. The Journal of Energy Storage, 2020, 27(2): 101085. |
14 | YANG R, XIONG R, SHEN W. On-board soft short circuit fault diagnosis of lithium-ion battery packs for electric vehicles using extended Kalman filter[J]. In CSEE Journal of Power and Energy Systems. doi: 10.17775/CSEEJPES.2020.03260. |
15 | 郑岳久. 车用锂离子动力电池组的一致性研究[D]. 北京:清华大学, 2014. |
ZHENG Y J. Study on cell variations of lithium-ion power battery packs in electric vehicles[D]. Beijing:Tsinghua University, 2014. | |
16 | ZHANG Z, KONG X, ZHENG Y, et al. Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters[J]. Energy, 2019, 166(1): 1013-1024. |
17 | FENG X, YUE P, HE X, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18(8):26-39. |
18 | 高文凯. 锂离子动力电池的短路故障诊断研究[D]. 上海:上海理工大学, 2020. |
GAO W K. Study on short circuit diagnosis of lithium ion power battery[D]. Shanghai:University of Shanghai for Science & Technology, 2020. | |
19 | KONG X, ZHENG Y, OUYANG M, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[J]. Journal of Power Sources, 2018, 395(8):358-368. |
20 | XU J, WANG H, SHI H, et al. Multi-scale short circuit resistance estimation method for series connected battery strings[J]. Energy, 2020,202(7):117647. |
21 | MENG J W, BOUKHNIFER M, DELPHA C, et al. Incipient short-circuit fault diagnosis of lithium-ion batteries[J]. The Journal of Energy Storage, 2020, 31(10):101658. |
22 | BING X, SHANG Y, NGUYEN T, et al. A correlation based detection method for internal short circuit in battery packs[A]. 2017. |
23 | FENG X, WENG C, OUYANG M, et al. Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy, 2016, 161(1): 168-180. |
24 | 令狐金卿. 基于滤波算法和增量容量分析的动力电池状态估计研究[D]. 广州:华南理工大学, 2019. |
LINGHU J Q. Research on state estimation of power batteries based on filtering algorithms and incremental capacity analysis[D]. Guangzhou:South China University of Technology, 2019 | |
25 | 高洋. 三元材料锂离子电池老化诊断、评估与建模方法[D]. 北京:北京交通大学, 2019. |
GAO Y. Aging diagnosis, evaluation and modeling of lithium Ion batteries with Li(NiMnCo)O2 Cathod[D]. Beijing:Beijing Jiaotong University, 2019 | |
26 | 张莉,高兴奇,张健豪. 基于平均-差异模型的电池组短路电流估计[J].汽车工程,2021, 43(11):1702-1709. |
ZHANG L, GAO X Q, ZHANG J H. Short-circuicurrent estimation of battery pack based on average- difference model[J]. Automotive Engineering, 2021, 43(11):1702-1709. |
[1] | 陈飞,孔祥栋,孙跃东,韩雪冰,卢兰光,郑岳久,欧阳明高. 锂离子电池制造工艺仿真技术进展[J]. 汽车工程, 2023, 45(9): 1516-1529. |
[2] | 胡明辉,朱广曜,刘长贺,唐国峰. 考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计[J]. 汽车工程, 2023, 45(9): 1688-1701. |
[3] | 梁海强,何洪文,代康伟,庞博,王鹏. 融合经验老化模型和机理模型的电动汽车锂离子电池寿命预测方法研究[J]. 汽车工程, 2023, 45(5): 825-835. |
[4] | 廉玉波,凌和平,马晴婵,任强,贺斌. 电动汽车锂离子电池脉冲加热技术研究进展[J]. 汽车工程, 2023, 45(2): 169-174. |
[5] | 吕又付,罗卫明,陈荐,吴锡鸿,李传常. 分层优化测定锂离子电池比热容参数的实验研究[J]. 汽车工程, 2023, 45(2): 183-190. |
[6] | 李贵敬,谷青锴,杨昊鑫,黄健齐,邸立明. PA/EG耦合风冷电池热管理系统轻量研究[J]. 汽车工程, 2023, 45(2): 209-218. |
[7] | 王萍,弓清瑞,程泽,张吉昂. 基于AUKF的锂离子电池SOC估计方法[J]. 汽车工程, 2022, 44(7): 1080-1088. |
[8] | 彭宇明,袁明晓,敬卓鑫,张永林,黄港. 汇流排产热影响下的电池模组冷却系统改进设计[J]. 汽车工程, 2022, 44(6): 859-867. |
[9] | 毕贵红,谢旭,蔡子龙,骆钊,陈臣鹏,赵鑫. 动态条件下基于深度学习的锂电池容量估计[J]. 汽车工程, 2022, 44(6): 868-878. |
[10] | 马彦,李佳怡,马乾,陈明超. 基于迭代动态规划的动力电池组热管理优化策略[J]. 汽车工程, 2022, 44(5): 709-721. |
[11] | 刘首彤,黄沛丰,白中浩. 锂离子电池机械滥用失效机理及仿真模型研究进展[J]. 汽车工程, 2022, 44(4): 465-475. |
[12] | 孙涛,郑侠,郑岳久,卢宇芳,匡柯,韩雪冰. 基于电化学热耦合模型的锂离子电池快充控制[J]. 汽车工程, 2022, 44(4): 495-504. |
[13] | 程夕明,胡薇,翟钧,罗荣华,张盼,徐野. 纯电动汽车低压电气系统效率研究[J]. 汽车工程, 2022, 44(4): 601-608. |
[14] | 王萍,彭香园,程泽,张吉昂. 基于数据驱动模型融合的锂离子电池多时间尺度状态联合估计方法[J]. 汽车工程, 2022, 44(3): 362-371. |
[15] | 刘红锐,古栋华,李海瑞,张彬,钱晶. 一种串联锂离子电池组P-C-C-P均衡器及其控制方法[J]. 汽车工程, 2022, 44(3): 372-378. |
|