汽车工程 ›› 2023, Vol. 45 ›› Issue (5): 825-835.doi: 10.19562/j.chinasae.qcgc.2023.05.012
所属专题: 新能源汽车技术-动力电池&燃料电池2023年
收稿日期:
2022-11-10
修回日期:
2022-12-07
出版日期:
2023-05-25
发布日期:
2023-05-26
通讯作者:
何洪文
E-mail:hwhebit@bit.edu.cn
Haiqiang Liang1,3,Hongwen He1(),Kangwei Dai2,Bo Pang3,Peng Wang1
Received:
2022-11-10
Revised:
2022-12-07
Online:
2023-05-25
Published:
2023-05-26
Contact:
Hongwen He
E-mail:hwhebit@bit.edu.cn
摘要:
为提升实际应用中锂离子动力电池寿命预测精度,本文中提出一种融合经验老化模型和电池机理模型的电池寿命预测方法。该方法以基于经验老化模型SOH预测值作为卡尔曼算法的先验估计,以基于机理模型估计电池未来容量衰减量进而预测得到的SOH作为卡尔曼算法的后验修正,从而实现对锂离子电池寿命的准确预测。基于电芯试验数据的动力电池寿命预测算法验证结果表明,锂离子动力电池剩余寿命预测误差≤5.83%、基于实车数据的锂离子动力电池的剩余寿命预测误差≤8.12%,取得了良好的预测效果,丰富了锂离子动力电池寿命预测的方法。
梁海强,何洪文,代康伟,庞博,王鹏. 融合经验老化模型和机理模型的电动汽车锂离子电池寿命预测方法研究[J]. 汽车工程, 2023, 45(5): 825-835.
Haiqiang Liang,Hongwen He,Kangwei Dai,Bo Pang,Peng Wang. Research on Lithium Ion Battery Life Prediction Method Based on Empirical Aging Model and Mechanism Model for Electric Vehicles[J]. Automotive Engineering, 2023, 45(5): 825-835.
表3
电池机理模型基本参数表"
参数 | 参数含义 | 初始值 |
---|---|---|
Csn0/(mol·m-3) | 负极固相初始锂离子浓度 | 16 357.836 |
Csp0/(mol·m-3) | 正极固相初始锂离子浓度 | 4 663.44 |
Rsn/m | 负极活性颗粒半径 | 8.32×10-6 |
Rsp/m | 正极活性颗粒半径 | 9.84×10-6 |
Ln/m | 负极厚度 | 1.04×10-4 |
Lsep/m | 隔膜厚度 | 1.16×10-4 |
Lp/m | 正极厚度 | 3.59×10-5 |
Ce/(mol·m-3) | 液相锂离子浓度 | 571.862 |
An/m2 | 负极有效电极面积 | 0.117 |
Ap/m2 | 正极有效电极面积 | 0.18 |
Asep/m2 | 隔膜极有效电极面积 | 0.382 4 |
t0 | 电荷转移系数 | 0.039 |
Een | 负极孔隙率 | 0.3 |
Eesep | 隔膜孔隙率 | 0.4 |
Eep | 正极孔隙率 | 0.28 |
Esn | 负极活性材料体积分数 | 0.54 |
Esp | 正极活性材料体积分数 | 0.435 |
a | 电化学反应传递系数 | 0.5 |
Uside/V | 副反应均衡电势 | 0.4 |
k | 换算系数 | 1.45×10-5 |
KPeff | 正极液相有效离子电导率 | 0.5 |
Kneff | 负极液相有效离子电导率 | 0.5 |
Ksepeff | 隔膜液相有效离子电导率 | 0.4 |
Rf /Ω | 模型内阻 | 0.001 |
kp/(m2.5·(mol0.5·s)-1) | 正极电化学反应速率 | 1.00×10-12 |
kn/(m2.5·(mol0.5·s)-1) | 负极电化学反应速率 | 1.00×10-12 |
η/V | 粒子表面过电势 | 0.4 |
De/(m2·s-1) | 液相扩散系数 | 7.37868×10-10 |
Dsp/(m2·s-1) | 正极固相扩散系数 | 1.00×10-12 |
Dsn/(m2·s-1) | 负极固相扩散系数 | 1.00×10-12 |
ctotal,p/(mol·m-3) | 正极最大可用锂离子浓度 | 35 000 |
ctotal,n/(mol·m-3) | 负极最大可用锂离子浓度 | 35 000 |
as | 锂离子电池的比反应面积 | 5 000 |
nside | 参与反应的锂离子数 | 5 000 |
i0,side/(A·m-2) | 换电流密度 | 5 000 |
表4
待辨识参数及上下限"
参数 | 下限 | 上限 |
---|---|---|
KPeff | 0.1 | 0.6 |
Kneff | 0.1 | 0.6 |
Ksepeff | 0.1 | 0.6 |
Rf /Ω | 0 | 0.01 |
kp/(m2.5·(mol0.5·s)-1) | 1.00×10-12 | 1.00×10-9 |
kn/(m2.5·(mol0.5·s)-1) | 1.00×10-12 | 1.00×10-9 |
η/V | 0.1 | 0.6 |
De/(m2·s-1) | 1.00×10-12 | 1.00×10-9 |
Dsp/(m2·s-1) | 1.00×10-20 | 1.00×10-12 |
Dsn/(m2·s-1) | 1.00×10-20 | 1.00×10-12 |
ctotal,p/(mol·m-3) | 20 000 | 45 000 |
ctotal,n/(mol·m-3) | 20 000 | 45 000 |
as | 0 | 100 000 |
nside | 0 | 10 000 |
i0,side/(A·m-2) | 0 | 10 000 |
1 | CHRIS P.电动汽车市场加速发展[J]. Engineering, 2021, 7(2): 13-18. |
CHRIS P. Electric car market poised to accelerate[J]. Engineering, 2021, 7(2): 13-18. | |
2 | 王震坡,黎小慧,孙逢春.产业融合背景下的新能源汽车技术发展趋势[J]. 北京理工大学学报, 2020, 40(1): 1-10. |
WANG Z P, LI X H, SUN F C. Development trends of new energy vehicle technology under industrial integration [J]. Transactions of Beijing Institute of Technology, 2020, 40(1): 1-10. | |
3 | 安富强,赵洪量,程志,等.纯电动车用锂离子电池发展现状与研究进展[J]. 工程科学学报, 2019, 41(1): 22-42. |
AN F Q, ZHAO H L, CHENG Z, et al. Development status and research progress of power battery for pure electric vehicles[J]. Chinese Journal of Engineering, 2019, 41(1): 22-42. | |
4 | SBARUFATTI C, CORBETTA M, GIGLIO M, et al. Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks[J]. Journal of Power Sources, 2017, 344: 128-140. |
5 | ISHIDZU K, OKA Y, NAKAMURA T. Lattice volume change during charge/discharge reaction and cycle performance of Li[NixCoyMnz]O2[J]. Solid State Ionics, 2016: 176-179. |
6 | FERRALIS, NICOLA, MCGROGAN, et al. Effect of electrochemical charging on elastoplastic properties and fracture toughness of LixCoO2[J]. Journal of the Electrochemical Society, 2014. |
7 | LIU P, WANG J, HICKS G J, et al. Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses[J]. Journal of the Electrochemical Society, 2010, 157: A499-A507. |
8 | AN S J, LI J, DANIEL C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105(28):52-76. |
9 | BARRE A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013,241(1):680-689. |
10 | LI Y, TAKAHASHI M, WANG B F. A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling[J]. Electrochimica Acta,2006(51):3228-3234. |
11 | 马泽宇, 姜久春, 张维戈,等. 锂离子动力电池热老化的路径依赖性研究[J]. 电工技术学报, 2014, 29(5): 221-227. |
MA Z Y, JIANG J C, ZHANG W G, et al. Research on path dependence of large format LiMn2O4 battery degradation in thermal aging[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 221-227. | |
12 | 应振华.锂离子动力电池电化学建模与仿真[D]. 长春: 吉林大学, 2016. |
YING Z H. Electrochemical modeling and simulation of lithium-ion power batteries[D]. Changchun: Jilin University, 2016. | |
13 | 贺灵明. 基于电化学-热-副反应耦合模型的锂离子电池老化研究[D]. 长沙: 湖南大学, 2019. |
HE L M. Study on aging of lithium ion battery based on electrochemical-thermal-side reaction coupling model[D]. Changsha: Hunan University, 2019. | |
14 | 饶勇翔. 电动汽车锂离子电池健康状态估计及容量衰退预测[D]. 西安: 长安大学, 2019. |
RAO Y X. State of health estimation and capacity decline prediction of lithium ion batteries for electric vehicles[D]. Xi’an: Chang’an University, 2019. | |
15 | WIDODO A, SHIM M C, CAESARENDRA W, et al. Intelligent prognostics for battery health monitoring based on sample entropy[J]. Expert Systems with Applications an International Journal, 2011, 38(9): 11763-11769. |
16 | 叶婧. 基于高斯过程回归的锂电池数据处理[D]. 北京: 北京交通大学, 2016. |
YE J. Research on lithium-ion battery data processing based on gaussian process regression[D]. Beijing: Beijing Jiaotong University, 2016. | |
17 | LIU D, LUO Y, LIU J, et al. Lithium-ion battery remaining useful life estimation based on fusion nonlinear degradation AR model and RPF algorithm[J]. Neural Computing and Applications, 2014, 25(3): 557-572. |
18 | ZHOU Y, HUANG M. Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model[J]. Microelectronics Reliability, 2016, 65: 265-273. |
19 | 姜媛媛, 刘柱, 罗慧,等. 锂电池剩余寿命的ELM间接预测方法[J]. 电子测量与仪器学报, 2016, 30(2): 179-185. |
JIANG Y Y, LIU Z, LUO H, et al. ELM indirect prediction method for the remaining life of lithium-ion battery[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(2): 179-185. | |
20 | LIN C,XU J, MEI X. Improving state-of-health estimation for lithium-ion batteries via unlabeled charging data [J]. Energy Storage Materials, 2023, 54: 85–97. |
21 | SONG Y, LI L, PENG Y, et al. Lithium-ion battery remaining useful life prediction based on GRU-RNN[C]. 2018 12th International Conference on Reliability, Maintainability, and Safety (ICRMS), 317-322, Oct. 2018. |
22 | 吴飞腾. 基于深度学习的锂电池寿命预测方法[D]. 杭州: 浙江工业大学, 2020. |
WU F T. Life prediction of lithium-ion batteries based on deep learning[D]. Hangzhou: Zhejiang University of Technology, 2020. | |
23 | 倪裕隆. 基于SVR的锂离子电池剩余有效寿命预测方法[D]. 吉林:东北电力大学, 2020. |
NI Y L. Prediction method of remaining useful life of lithium-ion battery based on SVR[D]. Jilin: Northeast Electric Power University, 2020. | |
24 | 王萍, 张吉昂, 程泽, 等.基于充电电压片段的锂离子电池状态联合估计方法[J]. 湖南大学学报(自然科学版), 2021, 48(10): 187-200. |
WANG P, ZHANG J A, CHENG Z, et al. A coupled state estimation method of lithium batteries based on partial charging voltage segment[J]. Journal of Hunan University (Natural Sciences), 2021, 48(10): 187-200. | |
25 | 姜媛媛, 曾文文. 基于机理-数据驱动模型的锂电池剩余容量预测方法: CN108490357A[P]. 2018. |
JIANG Y Y, ZENG W W. Residual capacity prediction of lithium battery based on mechanism data driven model: CN108490357A[P]. 2018. | |
26 | 李琳琳.机理模型驱动的电动车辆锂离子电池状态估计方法研究[D]. 北京: 北京理工大学, 2020. |
LI L L. Physical model based state estimation of lithium-ion batteries for electric vehicles application[D]. Beijing: Beijing Institute of Technology, 2020. | |
27 | LI J, WANG D, PECHT M. An electrochemical model for high C-rate conditions in lithium-ion batteries[J]. Journal of Power Sources, 2019, 436(OCT.1): 226885.1-226885.10. |
28 | BIZERAY A M, JIN H K, DUNCAN S R, et al. Identifiability and parameter estimation of the single particle lithium-ion battery model[J]. IEEE Transactions on Control Systems Technology, 2017: 1-16. |
29 | SARASKETA Z E, GANDIAGA I, MARTINEZ L E, et al. Cycle ageing analysis of a LiFePO4 /graphite cell with dynamic model validations: towards realistic lifetime predictions[J]. Journal of Power Sources, 2015, 275. |
[1] | 张念忠,宋强,王冠峰,王明生. 车用永磁同步电机无电流传感器控制研究[J]. 汽车工程, 2024, 46(2): 281-289. |
[2] | 焦志鹏, 马建, 赵轩, 张凯, 孟德安, 韩琪, 张昭. 基于电动汽车制动安全检测的短时工况及方法研究[J]. 汽车工程, 2024, 46(1): 109-119. |
[3] | 原江鑫, 何莉萍, 李耀东, 李罡. 电动汽车BMS从控板热分析及散热优化[J]. 汽车工程, 2024, 46(1): 128-138. |
[4] | 张鹏博, 陈仁祥, 邵毅明, 孙世政, 闫凯波. 纯电动汽车电驱动系统故障诊断研究进展[J]. 汽车工程, 2024, 46(1): 61-74. |
[5] | 陈飞,孔祥栋,孙跃东,韩雪冰,卢兰光,郑岳久,欧阳明高. 锂离子电池制造工艺仿真技术进展[J]. 汽车工程, 2023, 45(9): 1516-1529. |
[6] | 胡明辉,朱广曜,刘长贺,唐国峰. 考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计[J]. 汽车工程, 2023, 45(9): 1688-1701. |
[7] | 贺伊琳,马建,杨舒凯,郑威,薛启帆. 融合预瞄特性的智能电动汽车稳定性模型预测控制研究[J]. 汽车工程, 2023, 45(5): 719-734. |
[8] | 吴忠强,张长兴. 考虑配电网负荷的电动汽车分布式充电控制[J]. 汽车工程, 2023, 45(4): 598-608. |
[9] | 吴志恒,刘爱民. 汽车永磁同步电机切换函数式混合控制策略[J]. 汽车工程, 2023, 45(4): 619-627. |
[10] | 王军年,高守林,杨钫,管畅洋,杨志华. 多行星排转矩定向分配电驱动桥振动特性优化[J]. 汽车工程, 2023, 45(3): 421-429. |
[11] | 廉玉波,凌和平,马晴婵,任强,贺斌. 电动汽车锂离子电池脉冲加热技术研究进展[J]. 汽车工程, 2023, 45(2): 169-174. |
[12] | 吕又付,罗卫明,陈荐,吴锡鸿,李传常. 分层优化测定锂离子电池比热容参数的实验研究[J]. 汽车工程, 2023, 45(2): 183-190. |
[13] | 张健豪,高兴奇,张莉. 基于容量增量曲线与充电容量差的电池组微短路诊断方法[J]. 汽车工程, 2023, 45(2): 191-198. |
[14] | 李贵敬,谷青锴,杨昊鑫,黄健齐,邸立明. PA/EG耦合风冷电池热管理系统轻量研究[J]. 汽车工程, 2023, 45(2): 209-218. |
[15] | 朱成,刘頔,滕欣余,张国华,于丹,刘沙,胡苧丹. 新能源汽车综合经济性对比分析及预测研究[J]. 汽车工程, 2023, 45(2): 333-340. |
|