汽车工程 ›› 2023, Vol. 45 ›› Issue (9): 1516-1529.doi: 10.19562/j.chinasae.qcgc.2023.09.002
所属专题: 新能源汽车技术-动力电池&燃料电池2023年
陈飞1,孔祥栋2,孙跃东1,韩雪冰2,卢兰光2,郑岳久1,欧阳明高2
收稿日期:
2023-01-29
修回日期:
2023-03-02
出版日期:
2023-09-25
发布日期:
2023-09-23
通讯作者:
韩雪冰
基金资助:
Fei Chen1,Xiangdong Kong2,Yuedong Sun1,Xuebing Han2,Languang Lu2,Yuejiu Zheng1,Minggao Ouyang2
Received:
2023-01-29
Revised:
2023-03-02
Online:
2023-09-25
Published:
2023-09-23
Contact:
Xuebing Han
摘要:
锂离子电池的综合性能不仅取决于材料和结构的创新,还与制造工艺及相关设备技术的进步息息相关。目前电池制造厂商针对不同体系的电池工艺开发多采用穷举法进行实验试错,在工艺仿真技术方面还存在较大的发展空间。面向电池高质量制造发展和数智化升级的行业发展趋势,本文结合宏观电池制造设备和微观电池电极结构两个角度,对电池制造工艺仿真研究现状进行了系统总结,分析了各工序工艺仿真技术机理研究、结构发展及应用前景,并进一步指出当前研究的不足及未来的发展趋势,旨在为优化锂离子电池的制造流程和提高其综合性能提供理论参考。
陈飞,孔祥栋,孙跃东,韩雪冰,卢兰光,郑岳久,欧阳明高. 锂离子电池制造工艺仿真技术进展[J]. 汽车工程, 2023, 45(9): 1516-1529.
Fei Chen,Xiangdong Kong,Yuedong Sun,Xuebing Han,Languang Lu,Yuejiu Zheng,Minggao Ouyang. Progress in Simulation Technology of Lithium-ion Battery Manufacturing Process[J]. Automotive Engineering, 2023, 45(9): 1516-1529.
1 | 宋维力, 范丽珍. 超级电容器研究进展:从电极材料到储能器件[J]. 储能科学与技术, 2016(6):12. |
SONG W L, FAN L Z. Research progress on supercapacitors: from electrode materials to energy storage devices[J]. Energy Storage Science and Technology, 2016(6):12. | |
2 | 徐乐, 邓忠伟, 谢翌,等. 锂离子电池高精度机理建模,参数辨识与寿命预测研究进展[J]. 机械工程学报, 2022, 58(22):18. |
XU L, DENG Z W, XIE Y, et al. Research progress on high-precision mechanism modeling, parameter identification, and life prediction of lithium-ion batteries[J]. Journal of Mechanical Engineering, 2022, 58(22):18. | |
3 | GAYON-LOMBARDO A, MOSSER L, BRANDON N P, et al. Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries [J]. NPJ Computational Materials, 2020, 6(1). |
4 | 陈泽宇, 张渤, 熊瑞,等. 动力电池低温极速自加热系统加热一致性及其影响因素的建模分析[J]. 机械工程学报, 2021, 57(22):226-236. |
CHEN Z Y, ZHANG B, XIONG R, et al. Modeling and analysis of heating consistency and influencing factors of high-speed self-heating system for power battery at low temperature[J]. Journal of Mechanical Engineering, 2021, 57(22):226-236. | |
5 | CHEN F, ZHU W, KONG X, et al. Study on the Homogeneity of large-size blade lithium-ion batteries based on thermoelectric coupling model simulation [J]. Energies, 2022, 15(24). |
6 | 李日康, 王学远, 戴海峰,等. 不同温度与荷电状态下锂离子电池传荷电阻估计[J]. 汽车工程, 2020, 42(4):10. |
LI R K, WANG X Y, DAI H F, et al. Estimation of charge transfer resistance of lithium-ion batteries under different temperatures and state of charge[J]. Automotive Engineering, 2020, 42(4):10. | |
7 | FRANCO A A. Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges [J]. RSC Advances, 2013, 3(32). |
8 | 吕思奇, 李娜, 陈浩森,等. 电池电极过程可视化与定量化技术的研究进展[J]. 储能科学与技术, 2022, 11(3):23. |
LV S Q, LI N, CHEN H S, et al. Research progress on visualization and quantification techniques for battery electrode processes[J]. Energy Storage Science and Technology, 2022, 11(3):23. | |
9 | LIU X H, ZHANG L S, YU H Q, et al. Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle [J]. Adv Energy Mater, 2022, 12(33). |
10 | 任元, 罗亚桥, 施思齐. 锂电池中的计算物理学[J]. 物理, 2022, 51(6):13. |
REN Y, LUO Y Q, SHI S Q. Computational physics in lithium batteries[J]. Physics, 2022, 51(6):13. | |
11 | 苏海萍, 李芯蕊, 练成,等. 一种柔性自支撑硅基锂离子电池负极材料的制备方法: CN111180686A[P]. 2020. |
SU H P, LI X R, LIAN C, et al. Method for preparing flexible self-supported silicon-based lithium-ion battery anode material: CN111180686A[P]. 2020. | |
12 | YAN B, LIM C, SONG Z, et al. Analysis of polarization in realistic Li ion battery electrode microstructure using numerical simulation [J]. Electrochimica Acta, 2015, 185: 125-141. |
13 | 徐乐, 邓忠伟, 谢翌,等. 锂离子电池电化学-热耦合模型对比研究[J]. 机械工程学报, 2022, 58(22):17. |
XU L, DENG Z W, XIE Y, et al. Comparative study of electrochemical-thermal coupled models for lithium-ion batteries[J]. Journal of Mechanical Engineering, 2022, 58(22):17. | |
14 | 杜江龙, 林伊婷, 杨雯棋,等. 模拟仿真在锂离子电池热安全设计中的应用[J]. 储能科学与技术, 2022(3):011. |
DU J L, LIN Y T, YANG W Q, et al. Application of simulation and modeling in thermal safety design of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022(3):011. | |
15 | XIONG R, ZHANG Y, WANG Y, et al. Scalable manufacture of high-performance battery electrodes enabled by a template-free method [J]. Small Methods, 2021, 5(6): e2100280. |
16 | YANG X G, LENG Y, ZHANG G, et al. Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging [J]. J Power Sources, 2017, 360: 28-40. |
17 | 宋维力, 陈浩森, 焦树强, 等. 储能电池原位可视化表征技术与拓展 [ C]. 中国化学会第三届中国能源材料化学研讨会. 中国北京. 2018: 569.10.26914/c.cnkihy.2018.020417. |
SONG W L, CHEN H S, JIAO S Q, et al. In-situ visualization characterization techniques and expansion of energy storage batteries [C]. Proceedings of the 3rd Chinese Energy Materials Chemistry Symposium, Chinese Chemical Society. Beijing,China.2018:569.doi:10.26914/c.cnkihy.2018.020417. | |
18 | 于沛平, 许亮, 麻冰云,等. 多尺度模拟研究固体电解质界面[J]. 储能科学与技术, 2022(3):011. |
YU P P, XU L, MA B Y, et al. Multi-scale simulation study of solid electrolyte interfaces[J]. Energy Storage Science and Technology, 2022(3):011. | |
19 | CHEN Z Q, DANILOV D L, EICHEL R A, et al. Porous electrode modeling and its applications to Li-ion batteries [J]. Adv Energy Mater, 2022, 12(32). |
20 | YAN B, LIM C, YIN L, et al. Three dimensional simulation of galvanostatic discharge of LiCoO2 Cathode based on X-ray nano-CT images [J]. J Electrochem Soc, 2012, 159(10): A1604-A1614. |
21 | 巫湘坤,詹秋设,张兰,等.锂电池极片微结构优化及可控制备技术进展[J].应用化学,2018,35(9):1076-1092. |
WU X K, ZHAN Q S, ZHANG L, et al. Advances in microstructure optimization and controllable preparation techniques of lithium battery electrodes[J]. Applied Chemistry, 2018, 35(9):1076-1092. | |
22 | SHODIEV A, PRIMO E, ARCELUS O, et al. Insight on electrolyte infiltration of lithium ion battery electrodes by means of a new three-dimensional-resolved lattice Boltzmann model [J]. Energy Storage Mater, 2021, 38: 80-92. |
23 | LU X K, BERTEI A, FINEGAN D P, et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling [J]. Nature Communications, 2020, 11(1). |
24 | EBNER M, GELDMACHER F, MARONE F, et al. X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes [J]. Adv Energy Mater, 2013, 3(7): 845-850. |
25 | MORONI R, BORNER M, ZIELKE L, et al. Multi-scale correlative tomography of a Li-ion battery composite cathode [J]. Scientific Reports, 2016, 6. |
26 | KELLY S, EL-SOBKY H, TORRES-VERDIN C, et al. Assessing the utility of FIB-SEM images for shale digital rock physics [J]. Advances in Water Resources, 2016, 95: 302-316. |
27 | NGUYEN T T, VILLANOVA J, SU Z, et al. 3D quantification of microstructural properties of LiNi0.5Mn0.3Co0.2O2 high‐energy density electrodes by X‐ray holographic nano‐tomography [J].Advanced Energy Materials,2021,11(8). |
28 | LOMBARDO T, DUQUESNOY M, EL-BOUYSIDY H, et al. Artificial intelligence applied to battery research: hype or reality? [J]. Chemical Reviews, 2022, 122(12): 10899-10969. |
29 | FRANCO A A, RUCCI A, BRANDELL D, et al. Boosting rechargeable batteries R&D by multiscale modeling: myth or reality? [J]. Chemical Reviews, 2019, 119: 4569 - 4627. |
30 | LIU T J, TIU C, CHEN L C, et al. The influence of slurry rheology on lithium‐ion electrode processing[M].2018. |
31 | HAARMANN M, HASELRIEDER W, KWADE A. Extrusion-based processing of cathodes: influence of solid content on suspension and electrode properties [J]. Energy Technology, 2020, 8(2). |
32 | WATANABE T, YOKOKAWA T, YAMADA M, et al. Surface coating of a LiNi (x) Co (y) Al(1-x-y) O(2) (x > 0.85) cathode with Li(3)PO(4) for applying a water-based hybrid polymer binder during Li-ion battery preparation [J]. RSC Adv, 2021, 11(59): 37150-37161. |
33 | GIMENEZ C S A, FINKE B, NOWAK C, et al. Structural and mechanical characterization of lithium-ion battery electrodes via DEM simulations [J]. Advanced Powder Technology, 2018, 29(10): 2312-2321. |
34 | HAWLEY W B, LI J. Electrode manufacturing for lithium-ion batteries—analysis of current and next generation processing [J]. J Energy Storage, 2019, 25. |
35 | SCHILDE C, KAMPEN I, KWADE A. Dispersion kinetics of nano-sized particles for different dispersing machines [J]. Chemical Engineering Science, 2010, 65(11): 3518-3527. |
36 | LI M, ZHANG Y, WANG Z, et al. Microstructure evolutions in lithium ion battery electrode manufacturing [J]. Chinese Science Bulletin, 2021, 67(11): 1088-1102. |
37 | DING X Y, LIU J H, HARRIS T A L. A review of the operating limits in slot die coating processes [J]. Aiche Journal, 2016, 62(7): 2508-2524. |
38 | YAN L, XUE Q, LIU M, et al. Interface engineering for all-inorganic CsPbI(2) Br perovskite solar cells with efficiency over 14 [J]. Adv Mater, 2018: e1802509. |
39 | TANGUY P A, THIBAULT F, DE LA FUENTE E B. A new investigation of the metzner-otto concept for anchor mixing impellers [J]. The Canadian Journal of Chemical Engineering, 1996, 74(2): 222-228. |
40 | BARAILLER F, HENICHE M, TANGUY P A. CFD analysis of a rotor-stator mixer with viscous fluids [J]. Chemical Engineering Science, 2006, 61(9): 2888-2894. |
41 | ZHANG J, XU S, WEI L J C E, et al. High shear mixers: a review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties [J]. Chemical Engineering and Processing - Process Intensification,2012, 57-58(none): 25-41. |
42 | WANG G, LI J, ZHANG X, et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity [J]. Energy & Environmental Science, 2019, 12(2): 582-588. |
43 | LIU Z, BATTAGLIA V, MUKHERJEE P P. Mesoscale elucidation of the influence of mixing sequence in electrode processing [J]. Langmuir, 2014, 30(50): 15102-15113. |
44 | LOMBARDO T, HOOCK J B, PRIMO E N, et al. Accelerated optimization methods for force‐field parametrization in battery electrode manufacturing modeling [J]. Batteries & Supercaps, 2020, 3(8): 721-730. |
45 | 郭洪霞. 高分子粗粒化分子动力学模拟进展[J]. 高分子通报, 2011(10):10. |
GUO H X. Advances in coarse-grained molecular dynamics simulations of polymers[J]. Polymer Bulletin, 2011(10):10. | |
46 | RUCCI A, NGANDJONG A C, PRIMO E N, et al. Tracking variabilities in the simulation of lithium ion battery electrode fabrication and its impact on electrochemical performance [J]. Electrochimica Acta, 2019, 312: 168-178. |
47 | NGANDJONG A C, RUCCI A, MAIZA M, et al. Multiscale simulation platform linking lithium ion battery electrode fabrication process with performance at the cell level [J]. J Phys Chem Lett, 2017, 8(23): 5966-5972. |
48 | CHOUCHANE M, FRANCO A A. An invitation to engage with computational modeling: user‐friendly tool for in silico battery component generation and meshing [J]. Batteries & Supercaps, 2021, 4(9): 1451-1456. |
49 | CHOUCHANE M, RUCCI A, FRANCO A A. A versatile and efficient voxelization-based meshing algorithm of multiple phases [J]. ACS Omega, 2019, 4(6): 11141-11144. |
50 | RANCO A A, RUCCI A, BRANDELL D, et al. Boosting rechargeable batteries R&D by multiscale modeling: myth or reality? [J]. Chemical Reviews, 2019, 119(7): 4569-4627. |
51 | CARVALHO M D S, KHESHGI H S J A J. Low-flow limit in slot coating: theory and experiments [J]. Journal Metrics,2000, 46: 1907-1917. |
52 | WANG L, WANG J, HUANG Y, et al. Inkjet printed colloidal photonic crystal microdot with fast response induced by hydrophobic transition of poly(N-isopropyl acrylamide) [J]. Journal of Materials Chemistry, 2012, 22(40). |
53 | FERRARI B, MORENO R. The conductivity of aqueous Al2O3 slips for electrophoretic deposition [J]. Mater Lett (Netherlands), 1996, 28(4-6): 353-355. |
54 | GAO X, LIU X, HE R, et al. Designed high-performance lithium-ion battery electrodes using a novel hybrid model-data driven approach [J]. Energy Storage Mater, 2021, 36: 435-458. |
55 | RUSCHAK K J J C E S. Limiting flow in a pre-metered coating device [J]. Chemical Engineering Science, 1976, 31: 1057-1060. |
56 | ROMERO O J, SCRIVEN L E, CARVALHO M S. Slot coating of mildly viscoelastic liquids [J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 138(2-3): 63-75. |
57 | LEE S, NAM J. Analysis of slot coating flow under tilted die [J]. AIChE Journal, 2015, 61(5): 1745-1758. |
58 | KUKAVICA I, ZIANE M. Navier-Stokes equations with regularity in one direction [J]. Journal of Mathematical Physics, 2007, 48(6). |
59 | GAO Z, ZHANG D, LIU Z, et al. Formation mechanisms of environmentally acceptable chemical conversion coatings for zinc: a review [J]. Journal of Coatings Technology and Research, 2019, 16(1): 1-13. |
60 | PIMENTA J T, GONçALVES C, HILIOU L, et al. Effect of binder on performance of intumescent coatings [J]. Journal of Coatings Technology and Research, 2016, 13(2): 227-238. |
61 | TAN P, DIAO S, HUANG T, et al. Numerical and experimental study on coating uniformity control in simultaneous double-sided slot coating with a novel contacted slot die [J]. Chemical Engineering Science, 2020, 222. |
62 | JIN G L, AHN W G, KIM S J, et al. Effect of shim configuration on internal die flows for non-Newtonian coating liquids in slot coating process [J]. Korea-Australia Rheology Journal, 2016, 28(2): 159-164. |
63 | SCHMITT M, RAUPP S, WAGNER D, et al. Analytical determination of process windows for bilayer slot die coating [J]. Journal of Coatings Technology and Research, 2015, 12(5): 877-87. |
64 | DIEHM R, KUMBERG J, DöRRER C, et al. In situ investigations of simultaneous two‐layer slot die coating of component‐graded anodes for improved high‐energy Li‐Ion batteries [J]. Energy Technology, 2020, 8(5). |
65 | CHEN-WIEGART Y C K, DEMIKE R, ERDONMEZ C, et al. Tortuosity characterization of 3D microstructure at nano-scale for energy storage and conversion materials [J]. J Power Sources, 2014, 249: 349-356. |
66 | 张杨, 李波, 刘思,等. 电动汽车锂离子电池制造工艺技术——评《锂离子电池制造工艺原理与应用》 [J]. 化学工程,2021(10). |
ZHANG Y, LI B, LIU S, et al. Manufacturing process technology for electric vehicle lithium-ion batteries—a review of "Principles and Applications of Lithium-ion Battery Manufacturing Process"[J]. Chemical Engineering, 2021(10). | |
67 | KUMBERG J, MüLLER M, DIEHM R, et al. Drying of lithium‐ion battery anodes for use in high‐energy cells: influence of electrode thickness on drying time, adhesion, and crack formation [J]. Energy Technology, 2019, 7(11). |
68 | KUMBERG J, BAUNACH M, ESER J C, et al. Investigation of drying curves of lithium‐ion battery electrodes with a new gravimetrical double‐side batch dryer concept including setup characterization and model simulations [J]. Energy Technology, 2020, 9(2). |
69 | KUMBERG J, BAUNACH M, ESER J C, et al. Influence of layer thickness on the drying of lithium‐ion battery electrodes—simulation and experimental validation [J]. Energy Technology, 2021, 9(5). |
70 | STEIN M, MISTRY A, MUKHERJEE P P. Mechanistic understanding of the role of evaporation in electrode processing [J]. J Electrochem Soc, 2017, 164(7): A1616-A1627. |
71 | HUTTNER F, HASELRIEDER W, KWADE A. The influence of different post‐drying procedures on remaining water content and physical and electrochemical properties of lithium‐ion batteries [J]. Energy Technology, 2019, 8(2). |
72 | HAARMANN M, HASELRIEDER W, KWADE A. Extrusion‐based processing of cathodes: influence of solid content on suspension and electrode properties [J]. Energy Technology, 2019, 8(2). |
73 | HUTTNER F, MARTH A, ESER J C, et al. Design of vacuum post‐drying procedures for electrodes of lithium‐ion batteries [J]. Batteries & Supercaps, 2021, 4(9): 1499-1515. |
74 | HUANG T, TAN P, ZHANG Y, et al. Heat transfer uniformity analysis of floatation nozzle using a revised uniformity indicator [J]. International Journal of Heat and Mass Transfer, 2021, 168. |
75 | CUNHA R P, LOMBARDO T, PRIMO E N, et al. Artificial intelligence investigation of nmc cathode manufacturing parameters interdependencies [J]. Batteries & Supercaps, 2020, 3(1): 60-67. |
76 | LOMBARDO T, NGANDJONG A C, BELHCEN A, et al. Carbon-binder migration: a three-dimensional drying model for lithium-ion battery electrodes [J]. Energy Storage Mater, 2021, 43: 337-347. |
77 | NGANDJONG A C, LOMBARDO T, PRIMO E N, et al. Investigating electrode calendering and its impact on electrochemical performance by means of a new discrete element method model: towards a digital twin of Li-Ion battery manufacturing [J]. J Power Sources, 2021, 485. |
78 | BOCKHOLT H, HASELRIEDER W, KWADE A J P T. Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes [J]. Powder Technology,2016, 297: 266-274. |
79 | LU W Q, JANSEN A, DEES D, et al. High-energy electrode investigation for plug-in hybrid electric vehicles [J]. J Power Sources, 2011, 196(3): 1537-1540. |
80 | BOCKHOLT H, INDRIKOVA M, NETZ A, et al. The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties [J]. J Power Sources, 2016, 325: 140-151. |
81 | REYNOLDS C D, SLATER P R, HARE S D, et al. A review of metrology in lithium-ion electrode coating processes [J]. Materials & Design, 2021, 209. |
82 | MEYER C, BOCKHOLT H, HASELRIEDER W, et al. Characterization of the calendering process for compaction of electrodes for lithium-ion batteries [J]. Journal of Materials Processing Technology,2017, 249: 172-178. |
83 | MALIFARGE S, DELOBEL B, DELACOURT C J J O T E S. Determination of tortuosity using impedance spectra analysis of symmetric cell [J]. Journal of The Electrochemical Society,2017, 164. |
84 | 李茂源, 张云, 汪正堂,等. 锂离子电池极片制造中的微结构演化[J]. 科学通报. 2022, 67(11): 15. |
LI M Y, ZHANG Y, WANG Z T, et al. Microstructure evolution in the manufacturing of lithium-ion battery electrodes[J]. Chinese Science Bulletin, 2022, 67(11): 15. | |
85 | PARIKH D, CHRISTENSEN T, LI J. Correlating the influence of porosity, tortuosity, and mass loading on the energy density of LiNi0.6Mn0.2Co0.2O2 cathodes under extreme fast charging (XFC) conditions [J]. J Power Sources, 2020, 474. |
86 | LU X, DAEMI S R, BERTEI A, et al. Microstructural evolution of battery electrodes during calendering [J]. Joule, 2020, 4(12): 2746-2768. |
87 | REN Z, SHEN C, LIU M, et al. Improving LiNi0.9Co0.08Mn0.02O2’s cyclic stability via abating mechanical damages [J]. Energy Storage Mater, 2020, 28: 1-9. |
88 | MEYER C, BOCKHOLT H, HASELRIEDER W, et al. Characterization of the calendering process for compaction of electrodes for lithium-ion batteries [J]. Journal of Materials Processing Technology, 2017, 249: 172-178. |
89 | KANG H, LIM C, LI T, et al. Geometric and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 electrode with different calendering conditions [J]. Electrochimica Acta, 2017, 232: 431-438. |
90 | GIMÉNEZ S C, FINKE B, SCHILDE C, et al. Numerical simulation of the behavior of lithium-ion battery electrodes during the calendaring process via the discrete element method [J]. Powder Technology, 2019, 349: 1-11. |
91 | SANGRóS GIMéNEZ C, FINKE B, NOWAK C, et al. Structural and mechanical characterization of lithium-ion battery electrodes via DEM simulations [J]. Advanced Powder Technology, 2018, 29(10): 2312-2321. |
92 | DUQUESNOY M, LOMBARDO T, CHOUCHANE M, et al. Data-driven assessment of electrode calendering process by combining experimental results,insilicomesostructures generation and machine learning [J]. J Power Sources, 2020, 480: 229103 |
93 | SCHEFFLER S, JAGAU R, MüLLER N, et al. Calendering of silicon-containing electrodes and their influence on the mechanical and electrochemical properties [J]. Batteries, 2022, 8(5). |
94 | DIENER A, IVANOV S, HASELRIEDER W, et al. Evaluation of deformation behavior and fast elastic recovery of lithium-ion battery cathodes via direct roll-gap detection during calendering [J]. Energy Technology, 2022, 10(4): 11. |
95 | KNOCHE T, SUREK F, REINHART G. A process model for the electrolyte filling of lithium-ion batteries [J]. Procedia CIRP, 2016, 41: 405-410. |
96 | KRAYTSBERG A, EIN-ELI Y. Conveying advanced Li-ion battery materials into practice the impact of electrode slurry preparation skills [J]. Adv Energy Mater, 2016, 6(21): 23. |
97 | SCHILLING A, WIEMERS-MEYER S, WINKLER V, et al. Influence of separator material on infiltration rate and wetting behavior of lithium‐ion batteries [J]. Energy Technology, 2019, 8(2). |
98 | KADEN N, SCHLüTER N, LEITHOFF R, et al. Influence of the lamination process on the wetting behavior and the wetting rate of lithium-ion batteries [J]. Processes, 2021, 9(10). |
99 | WEYDANZ W J, REISENWEBER H, GOTTSCHALK A, et al. Visualization of electrolyte filling process and influence of vacuum during filling for hard case prismatic lithium ion cells by neutron imaging to optimize the production process [J]. J Power Sources, 2018, 380: 126-134. |
100 | DENG Z, HUANG Z Y, SHEN Y, et al. Ultrasonic scanning to observe wetting and "unwetting" in Li-ion pouch cells [J]. Joule, 2020, 4(9): 2017-2029. |
101 | KNOCHE T, ZINTH V, SCHULZ M, et al. In situ visualization of the electrolyte solvent filling process by neutron radiography [J]. J Power Sources, 2016, 331: 267-276. |
102 | SCHILLING A, GUMBEL P, MOLLER M, et al. X-ray based visualization of the electrolyte filling process of lithium ion batteries [J]. J Electrochem Soc, 2018, 166(3): A5163-A5167. |
103 | SCHWEIGER H G, OBEIDI O, KOMESKER O, et al. Comparison of several methods for determining the internal resistance of lithium ion cells [J]. Sensors (Basel), 2010, 10(6): 5604-5625. |
104 | YANG Q, LI W, WU H. Method for judging electrolyte infiltration of lithium ion battery, involves obtaining interface impedance change rate according to curve to determine electrolyte infiltration degree of lithium ion battery: CN113921892-A [P/OL]. <Go to ISI>://DIIDW:2022154314. |
105 | BHATTACHARYA S, ALPAS A T. Micromechanisms of solid electrolyte interphase formation on electrochemically cycled graphite electrodes in lithium-ion cells [J]. Carbon, 2012, 50(15): 5359-5371. |
106 | JEON D H. Wettability in electrodes and its impact on the performance of lithium-ion batteries [J]. Energy Storage Mater, 2019, 18: 139-147. |
107 | DAVOODABADI A, LI J, LIANG Y, et al. Analysis of electrolyte imbibition through lithium-ion battery electrodes [J]. J Power Sources, 2019, 424: 193-203. |
108 | SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components [J]. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1993, 47(3): 1815-1819. |
109 | MU Y T, CHEN L, HE Y L, et al. Pore-scale modelling of dynamic interaction between SVOCs and airborne particles with lattice Boltzmann method [J]. Building and Environment, 2016, 104: 152-161. |
110 | JIANG Z Y, QU Z G, ZHOU L. Lattice Boltzmann simulation of ion and electron transport during the discharge process in a randomly reconstructed porous electrode of a lithium-ion battery [J]. International Journal of Heat and Mass Transfer, 2018, 123: 500-513. |
111 | JIANG Z Y, QU Z G, ZHOU L, et al. A microscopic investigation of ion and electron transport in lithium-ion battery porous electrodes using the lattice Boltzmann method [J]. Applied Energy, 2017, 194: 530-539. |
[1] | 胡明辉,朱广曜,刘长贺,唐国峰. 考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计[J]. 汽车工程, 2023, 45(9): 1688-1701. |
[2] | 梁海强,何洪文,代康伟,庞博,王鹏. 融合经验老化模型和机理模型的电动汽车锂离子电池寿命预测方法研究[J]. 汽车工程, 2023, 45(5): 825-835. |
[3] | 廉玉波,凌和平,马晴婵,任强,贺斌. 电动汽车锂离子电池脉冲加热技术研究进展[J]. 汽车工程, 2023, 45(2): 169-174. |
[4] | 吕又付,罗卫明,陈荐,吴锡鸿,李传常. 分层优化测定锂离子电池比热容参数的实验研究[J]. 汽车工程, 2023, 45(2): 183-190. |
[5] | 张健豪,高兴奇,张莉. 基于容量增量曲线与充电容量差的电池组微短路诊断方法[J]. 汽车工程, 2023, 45(2): 191-198. |
[6] | 李贵敬,谷青锴,杨昊鑫,黄健齐,邸立明. PA/EG耦合风冷电池热管理系统轻量研究[J]. 汽车工程, 2023, 45(2): 209-218. |
[7] | 王萍,弓清瑞,程泽,张吉昂. 基于AUKF的锂离子电池SOC估计方法[J]. 汽车工程, 2022, 44(7): 1080-1088. |
[8] | 彭宇明,袁明晓,敬卓鑫,张永林,黄港. 汇流排产热影响下的电池模组冷却系统改进设计[J]. 汽车工程, 2022, 44(6): 859-867. |
[9] | 毕贵红,谢旭,蔡子龙,骆钊,陈臣鹏,赵鑫. 动态条件下基于深度学习的锂电池容量估计[J]. 汽车工程, 2022, 44(6): 868-878. |
[10] | 马彦,李佳怡,马乾,陈明超. 基于迭代动态规划的动力电池组热管理优化策略[J]. 汽车工程, 2022, 44(5): 709-721. |
[11] | 刘首彤,黄沛丰,白中浩. 锂离子电池机械滥用失效机理及仿真模型研究进展[J]. 汽车工程, 2022, 44(4): 465-475. |
[12] | 孙涛,郑侠,郑岳久,卢宇芳,匡柯,韩雪冰. 基于电化学热耦合模型的锂离子电池快充控制[J]. 汽车工程, 2022, 44(4): 495-504. |
[13] | 程夕明,胡薇,翟钧,罗荣华,张盼,徐野. 纯电动汽车低压电气系统效率研究[J]. 汽车工程, 2022, 44(4): 601-608. |
[14] | 王萍,彭香园,程泽,张吉昂. 基于数据驱动模型融合的锂离子电池多时间尺度状态联合估计方法[J]. 汽车工程, 2022, 44(3): 362-371. |
[15] | 刘红锐,古栋华,李海瑞,张彬,钱晶. 一种串联锂离子电池组P-C-C-P均衡器及其控制方法[J]. 汽车工程, 2022, 44(3): 372-378. |
|