汽车工程 ›› 2022, Vol. 44 ›› Issue (6): 868-878.doi: 10.19562/j.chinasae.qcgc.2022.06.008
所属专题: 新能源汽车技术-动力电池&燃料电池2022年
收稿日期:
2021-11-24
修回日期:
2021-12-30
出版日期:
2022-06-25
发布日期:
2022-06-28
通讯作者:
蔡子龙
E-mail:1250582439@qq.com
基金资助:
Guihong Bi,Xu Xie,Zilong Cai(),Zhao Luo,Chenpeng Chen,Xin Zhao
Received:
2021-11-24
Revised:
2021-12-30
Online:
2022-06-25
Published:
2022-06-28
Contact:
Zilong Cai
E-mail:1250582439@qq.com
摘要:
锂离子电池在老化过程中,其内部呈现非线性的复杂变化,因此直接使用动态条件下的锂离子电池运行时段的数据(电流、电压和温度)进行电池健康状态的实时估计是一个具有挑战性的问题。本文中选取锂离子电池随机充放电数据,对动态数据的部分片段进行时频特征提取,组成时频特征矩阵作为输入,构建级联式卷积神经网络和门控循环单元容量估计模型,对输入数据进行内在特征提取,并进一步挖掘各时间序列中的相关特征,实现锂离子电池动态条件下的容量估计。利用美国航空航天局锂离子电池随机使用数据集进行实验验证的结果表明,该方法能在仅已知电池的额定容量的情况下,准确完成锂离子电池容量估计。最后,本文还分析了模型超参数设置、原始数据时序长度、网络输入和模型结构对容量估计精度的影响。
毕贵红,谢旭,蔡子龙,骆钊,陈臣鹏,赵鑫. 动态条件下基于深度学习的锂电池容量估计[J]. 汽车工程, 2022, 44(6): 868-878.
Guihong Bi,Xu Xie,Zilong Cai,Zhao Luo,Chenpeng Chen,Xin Zhao. Capacity Estimation of Lithium-ion Battery Based on Deep Learning Under Dynamic Conditions[J]. Automotive Engineering, 2022, 44(6): 868-878.
1 | REN Guizhou, MA Guoqing, CONG Ning. Review of electrical energy storage system for vehicular applications[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 225-236. |
2 | 殷豪, 欧祖宏, 陈德, 等. 基于二次模式分解和级联式深度学习的超短期风电功率预测[J]. 电网技术, 2020, 44(2) : 445-453. |
YIN Hao, OU Zuhong, CHEN De, et al. Ultra-short-term wind power prediction based on two-layer mode decomposition and cascaded deep learning[J]. Power System Technology, 2020, 44(2) : 445-453. | |
3 | 胡天中, 余建波. 基于多尺度分解和深度学习的锂电池寿命预测[J]. 浙江大学学报(工学版), 2019, 53(10) : 1852-1864. |
HU Tianzhong, YU Jianbo. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(10) : 1852-1864. | |
4 | CHOI Yoh Wan, et al. Machine learning-based lithium-ion battery capacity estimation exploiting multi-channel charging profiles[J]. IEEE Access,2019, 7 : 75143-75152. |
5 | 李超然,肖飞,樊亚翔, 等.基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19) :4106-4119. |
LI Chaoran, XIAO Fei, FAN Yaxiang, et al. An approach to lithium-ion battery SOH estimation based onconvolutional neural network[J]. Transaction of China Electrotechnical Society, 2020, 35(19) : 4106-4119. | |
6 | FAN Y, XIAO F, LI C, et al. A novel deep learning framework for state of health estimation of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32 : 101741. |
7 | SHEN S, SADOUGHI M, LI M, et al. Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries[J]. Applied Energy, 2020, 260(C) : 114296-114296. |
8 | EL-DALAHMEH Ma’d, AL-GREER Maher,EL-DALAHMEH Mo’ath,et al. Time-frequency image analysis and transfer learning for capacity prediction of lithium-ion batteries[J]. Energies, 2020, 13(20) : 5447-5447. |
9 | VENUGOPAL P,VIGNESWARAN T. State-of-health estimation of Li-ion batteries in electric vehicle using IndRNN under variable load condition[J]. Energies, 2019, 12(22). |
10 | SALUCCI C B, BAKDI A, GLAD I K, et al. Multivariable fractional polynomials for lithium-ion batteries degradation models under dynamic conditions[J]. arXiv, 2021 : 2102.08111. Available from: https://arxiv.org/abs/2102.08111 |
11 | DAI Houde, ZHAO Guangcai, LIN Mingqiang, et al. A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and Markov chain[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10) : 7706-7716. |
12 | WANG Zengkai,ZENG Shengkui GUO Jianbin,et al. State of health estimation of lithium-ion batteries based on the constant voltage charging curve[J]. Energy, 2019, 167 : 661-669. |
13 | BOLE B, KULKARNI C S, DAIGLE M. Adaptation of an electrochemistry-based Li-Ion battery model to account for deterioration observed under randomized use[C]. Conference of the Prognostics & Health Management Society, 2014. |
14 | MA Shuai, JIANG Modi, TAO Peng, et al. Temperature effect and thermal impact in lithium-ion batteries: a review[J]. Progress in Natural Science: Materials International, 2018, 28(6) : 653-666. |
15 | CHEN Kebin,et al. Evaluation of the low temperature performance of lithium manganese oxide/lithium titanate lithium-ion batteries for start/stop applications[J]. Journal of Power Sources, 2015, 278 : 411-419. |
16 | SNYDER Chelsea. The effects of charge/discharge rate on capacity fade of lithium ion batteries[M]. Rensselaer Polytechnic Institute, 2016. |
17 | MADANI S S, SCHALTZ E, KR S K,et al. Effect of current rate and prior cycling on the coulombic efficiency of a lithium-ion battery[J]. Batteries, 2019, 5(3) : 57-57. |
18 | ARMENTA-DEU C, CARRIQUIRY J P,et al. Capacity correction factor for Li-ion batteries: influence of the discharge rate[J]. Journal of Energy Storage, 2019, 25(C) : 100839-100839. |
19 | UNO M, TANAKA K. Influence of high-frequency charge-discharge cycling induced by cell voltage equalizers on the life performance of lithium-ion cells[J]. IEEE Transactions on Vehicular Technology, 2011, 60 : 1505-1515. |
20 | REICHERT M, ANDRE D, ROESMANN A, et al. Influence of relaxation time on the lifetime of commercial lithium-ion cells[J]. Journal of Power Sources, 2013, 239 : 45-53. |
21 | JUAREZ-ROBLES D, VYAS A A, FEAR C, et al. Overcharge and aging analytics of Li-Ion cells[J]. Journal of The Electrochemical Society, 2020, 167(9) : 090547. |
22 | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11) : 2278-2324. |
23 | 梁海峰, 袁芃, 高亚静. 基于CNN-Bi-LSTM网络的锂离子电池剩余使用寿命预测[J]. 电力自动化设备, 2021, 41(10) : 213-219. |
LIANG Haifeng, YUAN Peng, GAO Yajing. Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network[J]. Electric Power Automation Equipment, 2021, 41(10) : 213-219. | |
24 | 张少宇, 伍春晖, 熊文渊. 采用门控循环神经网络估计锂离子电池健康状态[J]. 红外与激光工程, 2021, 50(2) : 236-243. |
ZHANG Shaoyu, WU Chunhui, XIONG Wenyuan. State of health estimation for lithium-ion batteries using recurrentneural networks with gated recurrent unit[J]. Infrared and Laser Engineering, 2021, 50(2) : 236-243. | |
25 | 李超然, 肖飞, 樊亚翔, 等. 基于深度学习的锂离子电池SOC和SOH联合估算[J]. 中国电机工程学报, 2021, 41(2) : 681-692. |
LI Chaoran, XIAO Fei, FAN Yaxiang, et al. Joint estimation of the state of charge and the state of health based on deep learning for lithium-ion batteries[J]. Proceedings of the CSEE, 2021, 41(2) : 681-692. |
[1] | 高泽, 楚遵康, 石稼晟, 林滏, 饶卫雄, 余海燕. 基于图网络的汽车零部件应力场快速预测方法研究[J]. 汽车工程, 2024, 46(1): 170-178. |
[2] | 陈飞,孔祥栋,孙跃东,韩雪冰,卢兰光,郑岳久,欧阳明高. 锂离子电池制造工艺仿真技术进展[J]. 汽车工程, 2023, 45(9): 1516-1529. |
[3] | 胡明辉,朱广曜,刘长贺,唐国峰. 考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计[J]. 汽车工程, 2023, 45(9): 1688-1701. |
[4] | 管欣,仲昭辉,詹军,奚腾龙,叶昊,高深圳,成健,廖世辉,蔡均. 基于卷积神经网络的汽车操纵稳定性试验类型识别方法[J]. 汽车工程, 2023, 45(9): 1765-1771. |
[5] | 刘卫国,项志宇,刘锐,李国栋,王子旭. 基于深度学习的端到端车辆运动规划方法研究[J]. 汽车工程, 2023, 45(8): 1343-1352. |
[6] | 王明,唐小林,杨凯,李国法,胡晓松. 考虑预测风险的自动驾驶车辆运动规划方法[J]. 汽车工程, 2023, 45(8): 1362-1372. |
[7] | 张雷, 关可人, 丁晓林, 郭鹏宇, 王震坡, 孙逢春. 基于图像识别与动力学融合的路面附着系数估计方法[J]. 汽车工程, 2023, 45(7): 1222-1234. |
[8] | 赵嘉豪,齐志权,齐智峰,王皓,何磊. 基于轮胎特征点的并行大型车辆朝向角计算[J]. 汽车工程, 2023, 45(6): 1031-1039. |
[9] | 赵霞,李朝,付锐,葛振振,王畅. 基于深度卷积-Tokens降维优化视觉Transformer的分心驾驶行为实时检测[J]. 汽车工程, 2023, 45(6): 974-988. |
[10] | 梁海强,何洪文,代康伟,庞博,王鹏. 融合经验老化模型和机理模型的电动汽车锂离子电池寿命预测方法研究[J]. 汽车工程, 2023, 45(5): 825-835. |
[11] | 陈妍妍,王海,蔡英凤,陈龙,李祎承. 基于检测的高效自动驾驶实例分割方法[J]. 汽车工程, 2023, 45(4): 541-550. |
[12] | 廉玉波,凌和平,马晴婵,任强,贺斌. 电动汽车锂离子电池脉冲加热技术研究进展[J]. 汽车工程, 2023, 45(2): 169-174. |
[13] | 兰凤崇,陈继开,陈吉清,蒋心平,李子涵,潘威. 实车数据驱动的锂电池剩余使用寿命预测方法研究[J]. 汽车工程, 2023, 45(2): 175-182. |
[14] | 吕又付,罗卫明,陈荐,吴锡鸿,李传常. 分层优化测定锂离子电池比热容参数的实验研究[J]. 汽车工程, 2023, 45(2): 183-190. |
[15] | 张健豪,高兴奇,张莉. 基于容量增量曲线与充电容量差的电池组微短路诊断方法[J]. 汽车工程, 2023, 45(2): 191-198. |
|